Kardi Teknomo
Kardi Teknomo Kardi Teknomo Kardi Teknomo
   
 
  Research
  Publications
  Tutorials
  Resume
  Resources
  Contact

Visit Tutorials below:
Adaptive Learning from Histogram
Adjacency matrix
Analytic Hierarchy Process (AHP)
Analysis of Algorithm
ArcGIS tutorial
Arithmetic Mean
Aroon Oscillator
Bayes Theorem
Bootstrap Sampling
Bray Curtis Distance
Break Even Point
Chebyshev Distance
City Block Distance
Conditional Probability
Complex Number
Continued Fraction
CryptArithmetic
Data Analysis from Questionnaire
Data Revival from Statistics
Decimal to Rational
Decision tree
Difference equations
Digital Root
Discriminant analysis
Divisibility
Eigen Value using Excel
Euclidean Distance
Euler Integration
Euler Number
Excel Iteration
Excel Macro
Excel Tutorial
Expectation Maximization (EM) Algorithm
Factorial Function
Feasibility Study
Financial Analysis
Financial Education
Gaussian Mixture Model
Generalized Inverse
Generalized Mean
Geometric Mean
Ginger Bread Man and Chaos
Graph Theory
Growth Model
Hamming Distance
Harmonic Mean
Hierarchical Clustering
Independent Events
Incident matrix
Jaccard Coefficient
Kernel basis function
Kernel Regression
k-Means clustering
K Nearest Neighbor
LAN Connections Switch
Learning from data
Lehmer Mean
Linear Algebra
Logarithm Rules
Mahalanobis Distance
MapReduce
Market Basket Analysis
Mean Absolute Deviation
Mean and Average
Mean, median, mode
Minkowski Distance
Minkowski Mean
Monte Carlo Simulation
Multi Agent System
Maximum Likelihood
Multicriteria decision making
Mutivariate Distance
Neural Network
Newton Raphson
Non-Linear Transformation
Normalization Index
Normalized Rank
Ordinary Differential Equation
Page Rank
Palindrome
PI
Power rules
Prime Factor
Prime Number
Q Learning
Quadratic Function
Queueing Theory
Rank Reversal
Recursive Statistics
Regression Model
Reinforcement Learning
Root of Polynomial
Runge-Kutta
Scenario Analysis
Sierpinski gasket
Sieve of Erastosthenes
Similarity and Distance
Solving System Equation
Standard deviation
String Distance
Summation Tricks
Support Vector Machines
System dynamic
Time Average
Tower of Hanoi
Variance
Vedic Square
Visual Basic (VB) tutorial
What If Analysis

 

General Network Graph Numerical Example

By Kardi Teknomo, PhD.

< Previous | Index | Next >

The second numerical illustration involves a simple but general network with 7 nodes and 16 directed links. We also generate 9 arbitrary ordinal graph simple trajectories (without loop) to be placed in the network. Every link on the network is passed by at least one trajectory.

Network GraphNetwork Graph

The network structure can be represented by 3 types of matrices: adjacency matrix, path matrix and external matrix. The adjacency matrix of the network is shown below together with its path matrix. Zeros in the matrices are deleted so that the reader can see the pattern of the matrix structure better. Notice that the non-zero and non-infinity entries are located on non-diagonal positions of the path matrix to indicate that there is path from any node to any other nodes in the network. The diagonals are zero because we do not have internal self-loop structure.

Network GraphNetwork Graph

The external matrix is obtained from the path matrix by removing the direct links structure (i.e. adjacency matrix).  In this case, we eliminate all one entries from the path matrix. The matrix-structure can be enhanced by binarizing the matrix.

Network GraphNetwork Graph

In utilizing the network, we now put the nine trajectories of our example into the network.Note that the 3 loops in trajectory #6. In the sketch the trajectory number is drawn as an exponent to show the number of loops to the readers. In the matrix set of trajectories and the computation, however, the loop on trajectory is simply represented as single loop in the set because members of a set are unique. This representation makes sense because our ordinal graph trajectory actually comes from dynamic trajectory. The agent will not be present more than once in a given link at a given time. Therefore, a unique representation of each trajectory is necessary.

Network Graph

Flow set matrix indicates the trajectory ids that pass through direct links in the network. Empty set elements occur when there is no direct link.

Network Graph

Counting the number of elements in each set of the flow set matrix produces flow matrix that can be visualized using a flow pattern.

Network GraphNetwork Graph

Intersecting the trajectory sets that go out of a node and trajectories that go in to a node produces OD- set matrix. For instance, trajectory #1 of a->b->c->e->g->f will produce origin destination pair nodes of {a->b, a->c, a->e, a->g, a->f, b->c,b->e, b->g,b->f, c->e, c->g, c->f, e->g, e->f, g-f}. Putting the trajectory id into the OD pair nodes produces origin-destination-set matrix. OD matrix simply counts the number of elements of the OD set matrix.

Network GraphNetwork Graph

Desire-line set matrix is obtained from the set difference between OD-set matrix and flow-set matrix. For instance, trajectory ids {1,2,3,4,8,9} are passing node a to node b, however, only trajectory ids {1, 4,9} are passing direct link Network Graph. The remaining trajectories {2,3, 8} are using other alternative route to go from node a to node b.

Network GraphNetwork Graph

Taking only parts of direct links from the desire-line-set matrix, we obtain alternative route flow set matrix. Notice that not all direct links have alternative route flow. For instance, linksNetwork Graph,Network Graph,Network Graphand Network Graph have only direct link flows without alternative route flows (because no trajectory is passing through those OD pairs using alternative route).

Network Graph

The alternative route flow matrix is simply the count of the members of set. The visualization of alternative flow matrix is also shown.

Network GraphNetwork Graph

In this numerical example, it is clear that the relationship of following equation holds because

Network Graph

 

< Previous | Index | Next >

 

Share and save this tutorial
Add to: Del.icio.us  Add to: Digg  Add to: StumbleUpon   Add to: Reddit   Add to: Slashdot   Add to: Technorati   Add to: Netscape   Add to: Newsvine   Add to: Mr. Wong Add to: Webnews Add to: Folkd Add to: Yigg Add to: Linkarena Add to: Simpy Add to: Furl Add to: Yahoo Add to: Google Add to: Blinklist Add to: Blogmarks Add to: Diigo Add to: Blinkbits Add to: Ma.Gnolia Information

 

These tutorial is copyrighted.

Preferable reference for this tutorial is

Teknomo, Kardi. (2013) Relationship between Generalized Origin Destination and Flow Matrix – A Tutorial
http://people.revoledu.com/kardi/research/trajectory/od/

 

 
© 2007 Kardi Teknomo. All Rights Reserved.
Designed by CNV Media