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Abstract 
This paper shows the relationship between flow, generalized origin destination (OD) and alternative route 

flow from a set of ordinal graph trajectories. In contrast to traffic assignment methods that employ OD 

matrix to produce flow matrix, we use ordinal trajectory on a network graph as input and produce both 

the generalized OD matrix and the flow matrix, with the alternative and substitute route flow matrices as 

additional outputs. Using linear algebra-like operations on matrix-sets, the relationship between network 

utilization (in terms of flow, generalized OD, alternative route flow and desire line) and network structure 

(in terms of distance matrix and adjacency matrix) are derived. 
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1. Introduction 
 

In the vast literature on transportation planning, the researches in the transportation field have made 

tremendous improvement to connect two main data products, which are the Origin-Destination (OD) 

matrix and the Traffic Flow (e.g., Bell and Iida (1997), Ortúzar and Willumsen (2001) for classical 

examples).  Traffic assignment deals with route selection and flow prediction in a transportation network 

based on actual flow on pairs of origin and destination. Given the adjacency matrix of the graph 

representing the network, the traffic assignment methods require an OD matrix as input. The OD matrix 

indicates the possible origin-destination pairs to consider, and specifies the number of agents that are 

expected to take each given OD pair. The main output of such traffic assignment methods is a flow matrix 

predicting the amount of flow in each link of the network graph. The result finds application in business 

planning involving pedestrian facilities and in government planning for road networks.  

 

Various traffic assignment techniques have improved the prediction accuracy of the (traffic) flow in a 

network using a given OD matrix. The flow on a specific link (i.e., mid-block) or node (i.e., intersection) is 

studied based on counting the agents (i.e., vehicles, pedestrian).  The OD matrix, on the other hand, is 

gathered through large-scale urban travel surveys that can include questionnaire. It is then calibrated by 

counting on a cordon or a screen line OD survey. Many techniques have been utilized to do the OD survey 
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(ITE, 2010), such as distributing color code card, license plate matching or matching the identification 

number of electronic tagging such as cell phone, RFID and so on. The obvious pattern in the OD survey is 

to catch the same agent identification at two locations. The two locations should be considered as source 

and sink along the cordon area set by the study. Due to such difficulties and hassle in the OD survey, many 

researchers have proposed to estimate the OD matrix based on traffic count in predetermined links. The 

whole technology to do the OD survey has been based on traffic counting the agents who pass certain 

predetermined locations of the observers.  

 

Recent technology on tracking is catching up, and the product of tracking an agent’s position is a set of 

trajectories. With improvements in technology, it is now possible to collect actual individual trajectories 

on a network using existing tracking devices such as video (Wei et al., 2005), GPS (Ko et al., 2008), and 

mobile or wireless devices (Subramanian et al., 2009). Advanced methods that combine multiple sensor 

information have even been developed for more precise automatic location systems (Smaili et al, 2008, 

Kong et al., 2009) and this type of information has enabled better analysis of various aspects of transit 

systems (El-Geneidy et al., 2011, Ko et al., 2008). 

 

In contrast to counting, tracking technologies do not require the observers to be in static locations. The 

agent itself is still associated with an identification number, but the agent can now generate location data 

at certain periodic predetermined time interval. The tracking devices can be video cameras, RFID devices, 

GPS systems and possibly many other new devices. In fact, using (microscopic) simulation, it is also 

possible to produce estimated trajectories based on the OD matrix and the network graph.  

 

With trajectories coming up as a new product, the obvious question is how to link these trajectories 

together with the other two existing products of OD matrix and Traffic Flow. The set of trajectories has 

not come up in the earlier literature of transportation planning because gathering trajectories itself 

requires the maturity of tracking technology (e.g. cell phone with GPS) that, until recently, has not been 

widely utilized by the public.  

 

Even with the recent availability of tracking technology, the standardization has not reached the point 

where there is agreement to share data among the data holders in tracking. The lack of full trajectory data 

on real traffic, however, does not mean that we cannot produce, at least theoretically, a link between the 

trajectory as a product data and the OD matrix and Traffic Flow. 

 

In this paper, we develop a new theory that describes the relationships among the OD matrix, (traffic) 

flow matrix and alternative & substitute route flow matrices. Our main purpose is to show the 

mathematical relationship between these matrices rather than simply to obtain OD from trajectories. The 

mathematical results are novel, and some of the derivations for these are non-trivial (a naïve attempt 

would probably result in inconsistencies). Moreover, instead of using a traffic assignment method that 

requires the OD matrix to produce the flow matrix, our results allow the use of trajectory from tracking 

devices as direct input and produce OD matrix, flow matrix and alternative route flow matrix. In other 
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words, we can directly obtain the results of traffic assignment, which is the flow in the network directly 

based on observation without traffic assignment. 

 

 
Figure 1. The missing link in transportation planning literature 

 

Traditionally, the OD Matrix is estimated from traffic count, while estimation of the traffic flow is usually 

done with traffic assignment methods from the OD matrix (refer to Fig. 1). It is easy to verify that traffic 

flow is simply an aggregation of the trajectories. We show in this paper how such aggregation can be done 

efficiently using our algorithms. From OD matrix, microscopic simulation can be done in order to obtain 

hypothetical trajectories, which may then be aggregated to estimate the traffic flow. Therefore, in the big 

picture, what is missing in this context is the direct link from the trajectories to the OD matrix (see Fig. 1). 

The missing link involves a question on how to obtain the OD matrix based on trajectories without having 

to compute the traffic flow. Obviously, a (missing link on) direct technique to obtain trajectory from traffic 

count is not our concern because of its impracticality. Even just the start and end of a trajectory are 

generally impossible to determine from traffic count alone without any information, whether estimate or 

actual, about the OD. 

 

The method proposed in this paper uses the trajectories as inputs, together with the adjacency matrix of 

a given network. The outputs are the generalized OD matrix, (traffic) flow matrix and an additional output 

of alternative route flow matrix.  This paper leverages on the features of new tracking devices and assumes 

that enough sampling of the trajectories of agents in a network has been determined. The number of 

required samples can be determined similar to methods to obtain traditional OD matrix. 

 

The main novelty of this paper is the derivation of a theoretical framework between network utilization 

(in terms of generalized OD matrix, flow matrix, alternative & substitute flow matrices, and indirect flow 

matrix) with the network structure (represented by the adjacency matrix and distance matrix) using 

algebra-like matrix-set operations. A crucial assumption that we make for this paper is that the trajectory 

of each agent does not involve a cycle. This means that no node is repeated in a given trajectory. This 
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important assumption is made in order to simplify some definitions, algorithms and proofs.  A future study 

will focus on the more general case where trajectory cycles are possible. 

 

 

 

The potential applications of this approach are significant. It makes it possible to automate the data 

collection and analysis over any traffic network through the existing tracking devices such as GPS, mobile 

or wireless devices. The generalized OD, flow and alternative-route flow can also be easily obtained, 

leading to automated visualization of flow pattern and other derivable information that are very useful 

for transportation planning and design.  

 

1.1. Definitions 

 

In this section, we define important terminologies that are used in this paper. 

 

A trajectory is a path of a moving agent (such as a vehicle, pedestrian, product, or a simple particle) within 

a specified observation time period from 1t to 2t , where 1 2t t . The path is often collected at discrete 

points using tracking devices. The sequence of points for a given agent n in 3-dimensional space is 

digitized at either continuous or discrete time and is symbolized by  ( ) ( ) ( ) ( )
T

n n n nX t x t y t z t .
 

When these points are sampled at discrete times using, say, a regular sampling rate, the set of values can 

be represented by the ntxyz table.  

 

A trajectory is dynamic by its nature. An ordinal trajectory of an agent is a projection of a (dynamic) 

trajectory onto the integer-indexed space dimension. In particular, the increasing timestamp sequence 

(t1, t2, …,tk) on which the agent position has been sampled is simply mapped to the integer sequence (1, 

2, …, k).  Ordinal trajectory can be gathered through questionnaire survey or aggregation of data from 

tracking devices. For a given agent, the ordinal trajectory can be represented simply by the sequence ((x1, 

y1, z1), (x2, y2, z2), …, (xk, yk, zk)) of (x, y, z) positions. 

 

An ordinal graph trajectory is a projection of an ordinal trajectory onto a network graph.  Given a graph G 

= (V, E) that represents a road network or a pedestrian facility that is being considered, an ordinal graph 

trajectory merely maps every sampled position (x, y, z) to some node vV in the network graph. Thus, an 

ordinal graph trajectory for an agent can be represented as a sequence (v1, v2, v3, …, vk) of node labels. 

 

Several matrices are used in our proposed method.  All of these are based on a graph representing the 

network in consideration. That is, each row and each column in the matrix corresponds to a node in the 

graph, and the matrix element at row i column j relates the nodes that correspond to i and j respectively.  

For instance, to represent the network graph in this paper, we use the standard adjacency matrix A , 
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where each matrix element contains either 1 or 0 to indicate the presence or absence, respectively, of an 

edge (link) joining the corresponding nodes. 

 

Another matrix that we use in this paper is the (path) distance matrix, denoted by P . The matrix element 

in a given row and column of P  gives the length of a minimum path between the corresponding nodes. 

As the network structure is represented by a standard adjacency matrix, getting the difference between 

the distance matrix and the standard adjacency matrix allows us to define the external matrix, denoted in 

this paper by E , which is useful in some of the formulations discussed later.  

 

The matrices A , P  and E  are generally static matrices because they contain information about the 

network graph structure, which is typically not changing during the observation period. Our study also 

uses matrices representing the non-static network utilization. These matrices are the generalized OD 

matrix D , the flow matrix F , the indirect flow matrix L , the alternative route flow matrix T and the 

substitute route flow matrix 
C

T , all of which are described subsequently. 

 

One of the matrices produced by our algorithms is the OD matrix. In many transportation planning 

literature, the origin destination (OD) matrix is defined as a matrix containing the amount of flow from 

source nodes to sink nodes (as proposed by Voorhees in 1955). The traditional OD matrix represents the 

flow between certain pairs of source and sink nodes in the network, and those pairs of nodes are often 

located at the boundary of the study area (i.e., cordon area). 

 

In this paper, the definitions of source and sink nodes are extended to include all nodes in the network. 

Thus, we introduce the generalized origin destination matrix with notation D , defined here as a matrix 

that contains the values of the flows, including both direct and indirect flows, from all nodes to all nodes 

in the network. Since the actual source and sink nodes are simply subsets of all nodes, if the generalized 

OD is known, then finding back the traditional OD matrix is straightforward. This simply involves removing 

the OD matrix rows and columns that do not correspond to any (traditional) source or sink node.  That is, 

the traditional OD matrix is just a sub matrix of the ordered generalized OD matrix (see End Note 1). From 

here on, unless clearly specified, when we refer to an OD matrix, we mean it to be the generalized OD 

matrix. 

 

This paper also uses the flow matrix, denoted by F , where each element gives the number of trajectories 

that have passed through the corresponding directed edge (link).  From the generalized OD matrix and 

the flow matrix, it is possible to count the trajectories that have gone indirectly from one node to another 

by passing through other nodes. This information is captured by what we call the indirect flow matrix, 

which we denote by L . The pattern of traditional OD flow on top of a transport network is often referred 

to as desire line. To draw desire line using computer, the desire line matrix , which is equivalent to indirect 

flow matrix, is utilized. 
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Indirect flow from some node s to another node t may happen because (1) there is no direct link from s 

to t or (2) there is a direct link from s to t but an agent still uses an indirect route. In the first case, there 

is no other choice for an agent but to use some indirect route. The second case seems to indicate some 

desirability of an indirect route even in the presence of a direct one. To quantify the latter case, we 

introduce the alternative route flow matrix, denoted by T , where each matrix element gives the number 

of trajectories that pass through indirect routes other than the corresponding available direct link. The 

former case, on the other hand, is covered by the substitute route flow matrix and is denoted by 
C

T . 

 

In this paper, we use a combination of both matrix and set operations. In contrast to ordinary matrices in 
linear algebra whose elements are numbers or scalar values (which we call matrix-count), it is necessary 
to introduce a matrix-set which is a matrix whose elements are sets. We use tilde on the top of a matrix 

label to indicate matrix-set, such as Flow matrix-set F  and OD matrix-set D  . Operations on matrix-sets 
are similar to both operations in matrix and set theory where the members in each matrix element must 
be unique and the order of the elements in a set is not important. We also extend the Hadamard 
multiplication to involve a matrix-set and a binary matrix. In this paper, the Hadamard product between 
a matrix set and a binary matrix is computed by multiplication of the corresponding elements, resulting 
either in the original element of the matrix set (if multiplied with 1) or an empty set (if multiplied by 0).  
We have developed a special numerical library of matrix-set to serve the purpose of this paper. 
 

With the generalization of the OD matrix in this paper, the visualization can be decomposed into three 

parts. 

1. A direct flow pattern is a weighted line on a link in the network representing the amount of flow 

passing through that link. Flow pattern is a visualization of a specific flow matrix F . 

2. An indirect flow pattern is a weighted line connecting origin nodes and destination nodes to 

represent the amount of flow from origin to destination that does not pass through the direct link 

(if any) between the origin and destination. We further consider some visualization schemes that 

are based on some of the matrices introduced earlier. In the similar transportation planning 

literature, such as those of Waters (1999) and Nielsen and Hovgesen (2008), the visualization of 

the OD flow on a link in the network graph is graphically known as a desire line. A desire line is a 

weighted line connecting (traditional) origin nodes and destination nodes to represent the 

amount of flow from origin to destination. Indirect flow pattern is a visualization of the indirect 

flow matrix L . Two types of visualization arise from this further. 

a. The alternative route flow pattern is a visualization of alternative route flow matrix T . As 

mentioned earlier, alternative route flow is an indirect flow from the origin to a 

destination where there is a direct link available. 

b. The substitute route flow pattern in a visualization of the substitute flow matrix
C

T , to 

describe the amount of flow from an origin to a destination through indirect routes 

because of the absence of a direct link. 

 

The word pattern is used to distinguish the matrix from the visualization. 

 



Teknomo, K. and Fernandez, P. (2014) A theoretical foundation for the relationship between generalized origin–destination matrix and flow 
matrix based on ordinal graph trajectories, Journal of Advance Transportation Research, Volume 48, Issue 6, pages 608–626, October 2014 DOI: 
10.1002/atr.1214 

 
 

1.2. Related works 

Most of the previous literature focuses on estimating the OD matrix. Cassetta et al. (1993) was the first 

paper to estimate OD matrices from traffic count dynamically. It shows the relationship between link flow 

and OD across a time interval through continuous integration of the flow.  The path flow movement was 

modeled using Dynamic Network Loading (DNL). Ben-Akiva and Ashok (2000) have proposed approaches 

to estimate real time OD matrix from traffic count using deviation of OD flow in state space model. The 

problem with this approach is the use of the assignment matrix, say from a network equilibrium traffic 

assignment, to estimate the OD matrix. Two of the most popular techniques used for the OD matrix 

estimation are the Maximum Likelihood (ML), e.g., used by Spiess (1987), and the Generalized Least 

Squares (GLS), e.g., used by Bell (1991). Yang (1994) has extended the GLS estimation model by integrating 

the network equilibrium model to estimate the OD matrix for congested networks. Lo, Zhang and Lam 

(1996) have used an ML estimator and Bayesian estimator of the OD matrix. Gradient-based solution 

techniques have also been applied by Chen (1994) and many others. Surveys on OD matrix estimation 

have been done by Gaudry (2002) and Bera and Rao (2010). 

 

Many OD matrix estimation studies have been conducted on specific contexts and/or using a variety of 

techniques. Mishalani, Coifman and Gopalakrishna (2002) have evaluated various types of surveillance 

system to estimate OD flows. Baek et al. (2004) have used Genetic Algorithm for estimating multiple-

vehicle OD matrix. Eisenman and List (2004) have utilized the probe data to estimate OD matrix. Kim and 

Chang (2008) have used neural nets for OD estimation in complicated urban street networks. Park et al. 

(2008) have applied a Markov Chain Monte Carlo method to estimate the OD split proportion matrix based 

on an Intelligent Transportation System volume data. Liu et al. (2010) have tried estimating the station-

to-station OD matrix in China’s metro network instead of the usual regional OD matrix, and have 

successfully estimated this matrix for short-term period by applying the Fratar and Logit models. Lee et 

al. (2010) have estimated dynamic OD models based on Kerner’s three-phase traffic theory, while Frederix 

et al. (2011) have analyzed the impact of congestion in dynamic OD estimation. 

 

Wood et al. (2009) have done visualization on the structure and spatial organization of random 

trajectories into a form of traditional OD matrix using spatial treemap. Teknomo and Gerilla (2009) have 

used static graph trajectory from a questionnaire survey to analyze pedestrian shopping behavior and 

flow pattern in a hypermarket. This paper is an extension and generalization of their work for any directed 

network graph. The term ordinal graph trajectory used in this paper is somewhat similar to Teknomo and 

Gerilla’s (2009) static graph trajectory, but is more applicable to general networks rather than mere 

pedestrian networks. 

 

With recent advances in tracking technology, gathering large trajectory dataset has become possible. 

Zheng et al. (2011) analyzed the GPS trajectories generated by 30,000 taxicabs in Beijing during the 

months of March until May of 2009 and 2010. Based on the analysis, they detected flaws in the urban 

plan for Beijing. Krumm (2011) discusses the use of the trajectories in order to do map matching, target 
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location prediction and route recommendation. Gidófalvi and Saqib (2010) propose an empirical study 

based on trajectories from approximately 170 million GPS readings collected within a year from 1500 taxis 

and 400 trucks in the streets of Stockholm. Bohte and Maat (2010) use the 2007 data from a one-week 

survey of 1104 respondents in Netherlands to demonstrate that GPS-based methods provide reliable 

multi-day data. Yuan et al. (2009) use the historical GPS trajectories from a large number of taxis in order 

to provide a user the fastest way to a target destination for a given departure time. 

 

Other studies on network trajectories focus on different areas. Kempa and Siuda (2000) use PCA to reduce 

the numerical operations for estimating traffic parameters for a large set of vehicle trajectories on a bend. 

Chen, Chootinan and Recker (2005) focus on Path Flow Estimator (PFE) which is used to obtain the OD 

flows, and this is extended to L-Norm PFE for handling inconsistencies in traffic count by Chen, Ryu and 

Chootinan (2010). Ding and Huang (2009) use a set of sample trajectories and a database system in order 

to predict real-time traffic conditions. The scope involves network-constrained moving objects, and their 

method produces higher accuracy using lower communication costs compared to floating car methods 

for predicting traffic flow. Zitoune et al (2009) use trajectory tracking in a grid of computers, together with 

predicted time delays, in order to improve the performance of SLA (Service Level Agreement) applications 

over a grid network. To the best of our knowledge, there has been no formal linear algebra-like treatment 

of OD matrices involving sets of trajectories as elements.  

2. Framework of Trajectory Analysis 
Figure  shows the conceptual framework of this paper.  Given a network we can view it in terms of its 

structure and its utilization.  

 

The network structure models a physical structure of the real world such as a road network or pedestrian 

network. Network graphs are often used to model the physical structure, and each of these consists of 

nodes and links and their properties. As mentioned earlier, we use various matrices to represent network 

structure models: the adjacency matrix A , the (path) distance matrix P  and E  computed by taking the 

difference P A . These matrices contain (normally) static information about the network structure. 
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Figure 2.Framework of Ordinal Trajectory Analysis 

Network utilization, on the other hand, models how a set of agents uses a given network. Unlike network 

structure, this is dynamic and the values depend on the observation time window. Some of the agents 

that move in a network are assumed to be tracked, and the tracking data is collected as an ordinal graph 

trajectory. Each trajectory has its own identification (id) number and is stored as a node sequence. From 

here on, the word trajectory is used to shorten ordinal graph trajectory, as they are the same in our 

context.  

 

In the ideal case, all agents are tracked, so that all trajectories are available.  However, this is generally 

unrealistic or too expensive at this point in time, and a good sample of gathered trajectories is instead 

assumed. Inaccuracies resulting from sampling can be addressed using traditional sampling theory. In any 

case, our input for the analysis of the network utilization is a set of ordinal graph trajectories.  

 

Given a set of trajectories, the network utilization can be analysed in several ways (refer to Fig. 2). One is 

to record the actual set of trajectories that pass through a given (generalized) OD pair. Another level of 

analysis is to count the flow as the number of elements in each set, and a third level is to visualize the 

flow pattern.  

 

In this paper, we derive the mathematical relationship between network structure (what is in the physical 

world) and network utilization (how the network is used). As explained in later sections, the network 

structure of the distance matrix is related to the network utilization of the OD matrix-set and the OD 

matrix. They share the same matrix structure. Similarly, the adjacency matrix is associated with the flow 

matrix, the flow matrix-set, as well as the visualization of flow pattern because they have the same matrix 

structure. We can also derive the association between the network structure of external matrix and 

network utilization of external set and the indirect flow matrix with its pattern. 

 

All of these matrices, whether they are about the network structure or utilization, are square matrices of 

size n x n, where n is the number of nodes in the network. The equality in the sizes of the matrices makes 
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it possible to compute the Hadamard product or element-wise product (denoted by symbol ), which, 

along with the matrix-set operations, is among our main matrix operators. 

3. Network Structure 
The structure of a network is modelled by a graph G=(V,E) and can be defined by several matrices. In this 

section, we will formally define the adjacency matrix, distance matrix and external matrix. 

 

The notation of indices for direct links and general links are distinguished in this paper. For a direct link, 

subscripts i  and j  are used, while notations s  and t are used for the more general origin-destination 

nodes for both direct link and indirect paths between two nodes.  

The adjacency matrix ij
   A a is a square binary matrix, where the rows and columns correspond to the 

nodes of the network graph and each element is defined by the function  

 

1 ( , )

0
ij

if i j E

otherwise


 


a  
(1) 

 

An entry in the adjacency matrix will have a value of one if and only if there is a direct link from node i  to 

j  in the given graph. One can expect zero diagonal entries when there is no self-loop in the graph. These 

are the kinds of graphs considered in our study. 

 

A distance matrix  stP p is a non-negative matrix indicating the minimum number of links needed to 

be traversed in order to go from a given (general origin) node s to a (general destination) node t . We can 

obtain the distance matrix from the adjacency matrix in  O V E using a simple algorithm similar to 

breadth-first search. Formally, the elements of the distance matrix  stP p is defined by 

( , ) if there is a path from  to 

otherwise
st

s t s t
 


p  

(2) 

 

 

where ( , )s t is the length of the shortest path from s to t . In general, for graphs where the links are 

positively weighted (instead of just having binary values), the Floyd-Warshall algorithm (Floyd (1962), 

Warshall (1962); see end note 3) can be used to compute for the distance matrix P  in  3
O V time. Note 

that the link weight may represent the generalized travel cost function (that is a function of cost, time, or 

distance). 

 

A distance matrix has the following properties: 
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 The elements in the diagonal are all zeros to indicate the minimum walk length from a node to 

itself. 

 All elements of the distance matrix where there is a direct link between the corresponding nodes 

have a value of 1.  

 Since this is also true for the adjacency matrix, and because the remaining elements in the 

adjacency matrix are 0, then we can say that every element of the adjacency matrix is less than 

or equal to the corresponding element in the distance matrix. We denote this concept by the 

expression 

A P  (3) 

 

and say that A  is bounded from above by P .  

 A node t is a sink (absorbing state) if and only if all entries in the row t, except for that in column 

t (which should have a value of zero), are infinity 

 

sink ,tjt V j t    p  (4) 

 

 Node s is a source (emanating state) if and only if all entries in column s (except for the element 

at row s, which should have a value of zero) are infinity 

 

source ,iss V i s    p  (5) 

 

The matrix structure of a distance matrix can be analyzed in its binarized form. A binarized distance matrix 

contains 0 at the diagonal, and 1 at row s column t (where s≠t) if and only if an agent can reach the node 

t from node s based on the network structure.  

A cap symbol is used to denote the binarized matrix P . Formally, it is defined as 

 

 : 0st st   p p  (6) 

 

That is, an element is 1 (representing a logical true) if and only if the corresponding element in the distance 

matrix is a positive non-infinity value. Otherwise, it is 0. The formula in Equation (6) also indicates that 

zero elements, e.g., those in the diagonal, remain unchanged when binarized. 

 

The external matrix is defined as the matrix whose elements are computed by the difference between the 

distance matrix and the adjacency matrix. The name external matrix comes from the fact that we 

eliminate the adjacency matrix from the distance matrix. In other words, we remove the direct link 

structure from the distance matrix. 

 

: E P A  (7) 

 

Hence, E  is bounded from above by P , that is, E P . 
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The matrix structure of external matrix E  can also be viewed through binarization. The binarized external 

matrix E  is computed directly from the external matrix E  or by using the binarized distance matrix and 

the adjacency matrix. 

 

 : : 0ij ij ij ij     e p a e  
(8) 

 

Since the binarized external matrix is bounded from above by the binarized distance matrix, and because 

both of these matrices are binary matrices, then the Hadamard multiplications of the binarized external 

matrix to the binarized distance matrix will produce the matrix itself. The same situation applies to the 

adjacency matrix. These lead to the following 2 identity relations about the network structure. 

 

Proposition-1: For any given network graph, the adjacency matrix A , binarized distance matrix P  and 

binarized external matrix E are related as follows. 

E P E  
(9) 

A P A  
(10) 

Proof: We prove this identity for E  and skip the proof for A  which is just similar. If 0ij e , then 

0ij ij e p . On the other hand, if 1ij e , then ijp  must also be 1 (otherwise if 0ij p then the path 

matrix element 0ij p , and therefore 0ij ij ij  e p a ), and hence, 1ij ij e p . In both cases, 

ij ij ije p e , thus proving the identity. QED 

4. Network Utilization 
 

Given a set of ordinal graph trajectories, it is possible to analyze the trajectories in three levels: 

1. Matrix-set level 

2. Matrix-count level 

3. Matrix-structure level 

 

The matrix-set and matrix-count levels both deal with network utilization while the matrix-structure level 

is about the network structure. 

 

In the matrix-set level, we deal with matrices where each element represents a set of trajectories, 

distinguished by their identification numbers. Matrix-set level is the top-level analysis, where the analysis 

is disaggregated in the form of trajectories. 

 

Matrix-count level deals with matrices that may be derived from matrix-set level by counting the number 

of trajectories in each matrix-set element. Most of the traditional matrix analyses (such as those for 

traditional OD and flow matrices) are on the matrix-count level. 
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Matrix-structure level deals with binarized matrices that may be derived from the matrix-count (or directly 

from matrix-set). In matrix-structure level, we shall see the similarity and relationship between the 

structural pattern of the network (such as adjacency matrix) and network utilization (such as binarized 

flow matrix). 

 

4.1. Flow Matrix from Trajectory 

 

This section describes a straightforward algorithm to build the flow matrix-set and flow matrix from a 

given set of trajectories. Suppose we have a set of acyclic trajectories data (i.e., each trajectory does not 

visit any node more than once) from a network. Let us denote ijf (an element of the matrix F ) as a set of 

trajectory identification numbers that pass through the direct link ij


.   

 

  1 2 1: | , ,..., , ,..., , 1ij h h ktr Tr tr v v v i v j v h h k       f  
(11) 

 

where Tr is the set of trajectories. The tilde symbol is used to denote set (matrix-set) to distinguish it 

from matrices involving scalar elements (matrix count). Algorithm 1 in Fig. 3 shows how to gather the flow 

matrix-set for each directed link in the network. The result of this algorithm is a set of trajectory 

identification numbers on each link in a form of a matrix-set.  

 

Algorithm 1: Trajectory Set to Flow Matrix-Set 
Input: Set Tr of ordinal graph trajectories 

Output: Flow matrix-set F  
1   For i  1 to n 

2    For j  1 to n 

3     ij f  

4    Next 
5   Next 
 

6   For each trajectory tr Tr  

7    For each direct link ij


in tr  

8     ij ij tr f f  

9    Next 
10  Next 

11  Return F  
Figure 3. Algorithm for computing the Flow Matrix-Set from the Trajectory Set 

 

We analyse the time and space complexities of the algorithm for m trajectories over a network with n 

nodes as follows. Because the trajectories are acyclic, the length of each trajectory is at most O(n). The 
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set union operation can actually be performed in O(1)-time since it involves appending only one element, 

i.e., the current trajectory id, per iteration. For this constant-time set operation to be possible, an array 

of m elements may be used to indicate the inclusion of a given trajectory in each specific set. Since there 

are m trajectories to process, and O(n2) OD pairs to consider, the algorithm requires O(mn2) space. This is 

also the time complexity of the initialization part, which is covered by Steps 1-5. The next phase, Steps 6-

10, builds the elements of the Flow matrix-set in O(mn)-time since there are m trajectories, each 

containing O(n) direct links, and for each link there is an O(1)-time set-append operation. Thus, the entire 

algorithm runs in O(mn2) time and space. 

 

For the matrix-count level, let us define link flow or simply flow as the number of trajectories that have 

passed through a given directed link in a network.  Flow matrix F  is used to record this count. 

:F F  
(12) 

 

Thus, Algorithm 1 and Equation (12) produce the flow matrix F  from ordinal graph trajectories in O(mn2)-

time where m is the number of trajectories and n is the number of nodes in the graph. The space 

complexity of the flow matrix is clearly O(n2). Flow matrix has the same size as that of the flow matrix-set. 

When the trajectories are acyclic (no trajectory passes a node more than once), the diagonal elements of 

a flow matrix are zero. 

 

The flow matrix can be analyzed in terms of its binarization. Since flow in any link cannot be  , the 

binarization can be simplified as follows. 

 

 : 0 F F  (13) 

For the matrix-structure level, one can easily verify that the binarized flow matrix F  is equal to the 

adjacency matrix if the network is fully utilized (i.e., at least one trajectory passes in each of the links). 

When the network is not fully utilized, the binarized flow matrix contains more zeros than the adjacency 

matrix. Thus, the binarized flow matrix is bounded from above by the network adjacency matrix. 

F A  
(14) 

 

Since the adjacency matrix represents the matrix structure of a fully-utilized network, the Hadamard 

product of flow matrix and adjacency matrix is equal to the flow matrix. This is formalized in the next 

proposition. 

 

Proposition-2: For any general network regardless of how the network is utilized, the flow matrix F and 

the adjacency matrix A  are related as follows. 

 

F A F  
(15) 

F A F  (16) 

F A F  
(17) 
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4.2. Generalized OD matrix from Trajectories 

The generalized OD matrix-set D  is the matrix whose element std  gives the set of trajectories that pass 

through node s to node t either directly (through a single link) or indirectly (through several links).  

 

  1 2: | , ,..., ,..., ,..., , , 1 .st p q ktr Tr tr v v v s v t v p q p q k        d  
(18) 

 

The above definition collects all the trajectories where node s (the pth node visited) is reached ahead of 

node t (the qth node visited) and k is the total number of nodes visited by the trajectories. The OD matrix-

set D  can be built from a set of trajectories using the algorithm in Fig. 4. 

 

 

 

 

 

Algorithm 2: Trajectories to OD Matrix-Set 
Input: Set Tr of ordinal graph trajectories 

Output: OD matrix-set D  
  

1   For s  1 to n 

2    For t  1 to n 

3     st d  

4    Next 
5   Next 
 

6   For each trajectory tr Tr  

7    For each direct or indirect link st


in tr  

8     st st tr d d  

9    Next 
10  Next 

11  Return D  
Figure 4. Algorithm for computing the OD Matrix-Set from the Trajectory Set 

 

As with the construction of the Flow matrix-set, we use an O(mn2)-space data structure for the OD matrix-

set D . This allows us to perform the set union operation in O(1) time. The initialization phase in Steps 1-

5, therefore, requires O(mn2) time. The building of the matrix D  in Steps 6-10 also requires O(mn2) time 

since this involves processing m trajectories with O(n2) links. The entire algorithm, thus, runs in O(mn2) 

time. 
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The OD matrix-set 
st

   D d  has the following properties 

 Each element indicates a set of trajectory identification numbers that goes out of the 

corresponding origin node and goes into the corresponding destination node 

 For a fully utilized network, all entries in a row are empty sets if and only if that row corresponds 

to a sink node, i.e., sink,tj j t V   d . Nothing is coming out of t .If the network is not fully 

utilized, then this property is true in one direction, i.e., a sink node in the graph will produce empty 

sets in the corresponding row. 

 For a fully utilized network, all entries in a column are empty sets if and only if that column 

corresponds to a source node, i.e., source,is i s V   d . Nothing is coming in to s. If the 

network is not fully utilized, then it is still certain that the column that corresponds to the source 

node will contain empty sets. 

 

On the matrix-count level, we can define the generalized OD matrix as the matrix where each element 

gives the cardinality of the set in the corresponding element of the OD matrix-set.  

 

:D D  
(19) 

 

 

The generalized OD matrix is also a square matrix and has the same size as the OD matrix-set. Each 

element of a generalized OD matrix is a number, instead of a set as in an OD matrix-set. This number gives 

the count of trajectories that go out of the corresponding origin node and into the corresponding 

destination node. The relationship between the OD matrix and the flow matrix is given below. 

 

Proposition-3: Any element in the Flow matrix-set is a subset of the corresponding element from the OD 

matrix-set. We write this by the shorthand that follows. 

 

F D  (20) 

 

Proof:  This follows immediately from the definitions stated in equations (11) and (18). QED 

 

An immediate corollary from the above proposition is justified by a basic subset property. 

 

Corollary-1: Any element in the flow matrix is less than or equal to the corresponding element from the 

OD matrix, written shorthand as 

 

F D  (21) 

 

On the matrix-structure level, the OD matrix can be binarized similar to Equation (13). 
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: ( 0) D D  (22) 

 

One can easily verify that the binarized forms of the OD and distance matrices, i.e., D  and P , are exactly 

the same if the network is fully utilized. However, if the network is not fully utilized, then the binarized 

OD matrix element will contain more 0s than the corresponding binarized distance matrix, and thus, 

 

D P  
(23) 

 

Since the binarized distance matrix contains the structure of a fully utilized network, we can obtain an 

equivalent relation that will hold regardless of the condition of the network utilization. This is stated as a 

next proposition. 

 

Proposition-4: For any general network regardless of how the network is utilized, the OD matrix D  and 

the distance matrix P , through its binarization P , are related as follows. 

 

D P D  
(24) 

 

Proof:  To prove this, consider the 2 cases when 0st d
 
and 0st d . If 0st d , then 0st st p d . If 

0st d , then 1st d
 

by definition and, from Equation (23), 1st p . This implies that

1st st st st p d d d . In both cases, st st std p d . QED 

 

4.3. Indirect Flow from Trajectories 

 

An indirect flow between a given OD pair s-t represents the amount of flow from s to t passing through 

more than 1 link. We formalize this concept and use the matrix-set L  to describe the trajectory sets of 

indirect flow:  

 

  1 2: | , ,..., ,..., ,..., ,..., , , , 1 .st p r q ktr Tr tr v v v s v v t v p q r p r q k         l  
(25) 

 

Similar to the definition of the generalized OD set matrix, the node s is visited by the trajectory ahead of 

node t. The difference here is that there is at least one node visited after s and before t (the rth visited 

node) for the trajectory to be considered part of the indirect flow (also known as desire line) matrix-set. 

 

In the utilization of the network using trajectories, the (generalized) OD nodes are defined for all nodes in 

the network, not only for certain source and sink nodes. For any OD pair, the amount of flow consists of 
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the direct and indirect flows, which are mutually exclusive. Therefore, the OD matrix-set D  can be 

decomposed into the flow matrix-set F  and the indirect flow matrix-set L  as follows 

 

 D F L  
(26) 

 

Equivalently, the indirect flow matrix-set is just the difference between the OD matrix-set and the flow 

matrix-set. Note that the following formula involves set difference rather than simple difference. 

 

 L D F  
(27) 

 

In the matrix-count level, the indirect flow matrix is simply the count of the number of trajectories in 

each element of the indirect flow matrix-set, i.e., 

 

:L L  
(28) 

 

Because of the mutual exclusivity of the direct and indirect flows, we have the following results. 

 D F L  (29) 

 L D F  (30) 

 

Note that the above relationships are correct for matrix-set and matrix count level. However, we cannot 

generalize it further to the structural level (see End Note 5). 

4.4. Alternative Route Flow 

Recall that the indirect flow can be partitioned further to distinguish between cases where a direct link 

is available (alternative route flow which is represented by the matrix T ) and where there is no direct 

link from a given node s to a given node t (substitute route flow which is represented by 
C

T ). The 

mutual exclusivity of these two gives rise to the following equations. 

 

:  C
L T T  (31) 

  C
L T T  

(32) 

 

Further analysis of T leads to Proposition-5. 

 

Proposition-5: The indirect flow is related to the adjacency matrix and the alternative route flow by the 

following three equations. 

T A L  
(33) 

T A L  (34) 

T A L  
(35) 
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Proof:  If 0ij a then, by definition, ij t , and therefore Equation (33) holds true no matter what L  

is. If 1ij a  then, by definition, 
c

ij t , and therefore, by Equation (31) L T . This implies that 

1ij ij ij ij ij  a l l l t and hence ij ij ijt a l . This proves Equation (33). It is easy to verify Equations 

(34) and (35) since they are simple corollaries of Equation (33). QED 

 

 

5. Relationships among matrices for Network Structure and Network 

Utilization 
In this section, we extend some of the previous results to derive more relationships among the matrices 

for the network structure and for the network utilization.  

5.1. Relationship between Flow and Origin-Destination 

Previously, Proposition-3 and Corollary-1 give some clues that there is a relationship between flow matrix 

and OD matrix. However, they do not specify the exact relationship. The following propositions give the 

relationships between Flow matrix, OD matrix and the adjacency matrix of the network graph. 

 

Proposition-6:  Given a generalized origin destination matrix  stD d , a flow matrix ij
   F f  and the 

network graph represented by its adjacency matrix ij
   A a , the following relationships hold: 

 F A D D  (36) 

  

Proof: We first prove the right side of the inequality. If 1ij a , then 1ij ij ij ij a d d d . However, 

even if ij


is not present in the network, it is still possible to have some trajectories move from i  to j

through some indirect path. This means that 0ij d , even if 0ij a . Therefore ij ij ija d d whether 

ija is 1 or 0, proving that A D D . The left side of the inequality can be proved similarly at the element 

level. It can also be derived by using Corollary-1, i.e., F D , then applying the Hadamard operator with 

A  to get A F A D , and finally applying Proposition-2 on the left hand side to get F A D . QED  

 

Equation (36) relates 2 network utilization matrices ( D  and F ) with a network structure matrix ( A ) in 

the general case. The inequality symbol can be replaced by the equality symbol after accounting for the 

cause of the difference.  This is tackled in the next proposition. 

 

Proposition-7:  If the matrix T  gives the alternative route flows from a given source node i  to a given 

destination node j , then the following relationships hold. 
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    C
F T A D D T  

(37) 

 

Proof: The Hadamard (piecewise) product of the binary adjacency matrix with the OD matrix is equal to a 

projection of the OD matrix onto the network graph to obtain only the flow on the direct links. This flow 

consists entirely of direct flows (captured by matrix F ) and alternative route flows (captured by matrix 

T ) which are mutually exclusive. This justifies the equality on the left. The same projection of the OD 

matrix can also be computed by removing the substitute route flow, as this is present only when there is 

no available direct link between a given source and a given sink. This proves the right side of Equation 

(37). QED  

 

Corollary-2: The left side of Equation (37) may also be written in a form that emphasizes either F or T as 

shown below. 

 F A D T  (38) 

 T A D F  (39) 

 

These trajectories recorded in the matrix T  are the ones that take other alternative routes from node i to 

node j
 rather than using the available direct link ij



. It is obvious that for a problem with no alternative 

route flow, T 0  and we obtain the equation F A D  (see also End Note 2).  

 

The right hand side of Equation (37) can also be analyzed to produce a formula for the substitute route-

flow 
C

T .This is formalized in the next proposition. 

 

Proposition-8:  If the matrix
C

T  gives the substitute route flows from any given source node i  to any given 

destination node j , then the following relationship holds. 

C
T E D  

(40) 

 

Proof: From Proposition-7, we have   C
A D D T . Rearranging the terms here gives  C

T D A D . 

Using Equation (24) gives  C
T P D A D . Factoring out D , and then subsequently applying the 

binarized form of Equation (7), we get    C
T P A D E D . QED 

 

 

5.2. Identity Relationships 

The following theorem is our main theory that relates the matrix-count level and matrix-structure level. 

The identity relationships also relate network structure and network utilization. These relationships work 

for any directed network graph where the trajectories are acyclic. 
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Theorem-1:  Given a network structure’s adjacency matrix A , binarized distance matrix P and binarized 

external matrix E , and given the network utilization quantified by a flow matrix F , OD matrix D , indirect 

flow matrix L  and alternative route flow matrix T , the following relationships are valid and are 

equivalent: 

 

 L T E D  
(41) 

 A D D E D  
(42) 

D P D  
(43) 

 F A D T  (44) 

  
  

 

Proof:  

1. Equation (41) follows immediately from Equations (32) and (40). This can further be written as 

 L T E D . Using Equation (30) on this gives    D F T E D , which can be rearranged 

into   F T D E D . Combining this with Equation (37) yields  A D D E D . 

2. Inputting the definition from Equation (7) into right hand side of Equation (42) gives 

( )    A D D E D D P A D . Expanding and deleting A D  in both sides yields 

Equation (43) which is actually the same as Equation (24). 

    A D D P D A D D P D  

3. Applying Equation (29) on the left side of Equation (43) produces  F L P D . Applying the 

binarized form of Equation (7) produces    F L E A D . Expanding the right side gives 

  F L E D A D . From Equation (40), we get   C
F L T A D . Applying Equation (32) 

produces     C C
F T T T A D . Rearranging some terms and then simplifying yields

 F A D T . 

4. Applying Equation (42) to Equation (44) produces    F D E D T . Rearranging the terms 

and then using Equation (30) allows us to obtain back  L T E D . 

Because the four equations may be derived from each other, they are equivalent.QED 

 

 

The table below summarizes the main results of this paper.  

 

Valid for all instances 
Valid only for instances 

involving fully utilized networks 

E P E  and A P A   
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F A  and F A F  F A  

D P and D P D  D P  

F D , F D and F D   

T A L , T A L  and T A L   

    C
F T A D D T  

 

 T A D F and C
T E D  

 

 L T E D  

  A D D E D  

 D P D  

  F A D T  

 

Table 1. Summary of the main results 

 

6. Conclusions 
 

In this paper, we provide a theoretical foundation for computing various aspects of generalized OD and 

flow information from trajectory data. Using a deductive approach on matrix-set, we have found a 

relationship between network structure (i.e., adjacency matrix, distance matrix and external matrix) and 

network utilization in three levels: (1) trajectory set, (2) matrix count and (3) structural pattern of these 

matrices. We have established that flow matrix-set is a subset of the origin-destination matrix-set, and 

therefore the flow matrix is element-wise less than or equal to the origin destination matrix. We have also 

proven that the addition of flow matrix and alternative flow matrix is equal to the Hadamard product of 

the adjacency matrix and the generalized OD matrix. However, the theoretical results did require this 

crucial assumption – that the trajectory of each agent does not involve a cycle. This allowed us to analyze 

in the set level instead of a multi-set level. An extension of this study shall consider instances where a 

trajectory may contain one or more cycles. 

 

In a few of the results, the network structure is furthermore assumed to be fully utilized, i.e., every link 

on the network is passed by at least one trajectory. Whether or not this assumption holds for a given 

instance can easily be verified by comparing the binarized flow matrix and its adjacency matrix. Full 

network utilization produces binarized flow matrix that is equal to its adjacency matrix.  Generalized cost, 

which is usually part of traffic assignment, is not considered here because it is already embedded inside 

the trajectory data set when the agents are utilizing the network.  

 

Obviously, based on our conceptual framework, there will be more open questions that can be established 

than what we have answered in this paper. For example, how accurate is the generalized OD matrix given 

a partial utilization of the trajectories, or when only a sample of trajectories is available instead of the 

entire population? How is the confidence level of the OD matrix given a certain accuracy level of the 
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trajectories itself? What is the dynamic relationship between dynamic trajectories to obtain dynamic flow 

and dynamic generalized OD matrix? All of these questions should be listed as further studies. 

7. End Notes 
1. This assumes that each agent starts from some origin and ends up in some destination, without exiting and then re-

entering through other (traditional) OD nodes. In contrast, suppose an agent goes from some origin node A to exit 

through destination node B, and then re-enters B to exit through destination node C, where A, B and C belong to the 

set of traditional OD nodes being considered. The traditional OD analysis would only recognize the flows from A->B and 

B->C, and will not include A->C. The generalized OD matrix in this paper will also include an entry for A->C. In this case, 

traditional OD matrix cannot be extracted directly from a submatrix of our generalized OD matrix; a separate algorithm 

will have to be run on the trajectory set to compute the traditional OD matrix.  We believe that A->C is an important 

information that must be preserved (the agent may go from A to C next time using a different route), but we also believe 

that occurrences of a similar scenario is not common in traditional OD analysis. In this case, the difference between the 

traditional OD matrix and the derived OD matrix (from the generalized OD submatrix) can be expected to be 

insignificant. 

2. Equation F A D  implies a projection of information from the generalized OD matrix into a space represented by 

the adjacency matrix. The generalized OD matrix contains more information that may be lost in the multiplication with 

the zeroes of the adjacency matrix. Thus, the flow matrix is inferior compared to the generalized OD matrix. The loss of 

information through multiplication with zero cannot be recovered. For example, we cannot obtain /D F A
because we cannot divide with zero. If the information of the generalized OD matrix is perfect, we can obtain the 

network structure from the generalized OD matrix and flow matrix using the following algorithm 

If 0stD   then 

 
1 / 1

0

st st

st

if F D
A

if otherwise


 


 

Else 

 0stA   

End If 

However in practice the above algorithm may not be so useful when there is noise in the measurement. 

3. The Floyd-Warshall algorithm is due to Floyd (1962), who based it on a theorem of Warshall (1962). 

4. Matlab code to demonstrate the formulas in this paper for any network data are available upon request from the 

authors (and also supplied to the reviewers of this paper). The code contains examples of both theoretical and data 

gathered from the real world. The numerical illustrations will be available in the author’s web site. 

5. Given the observed pattern that the matrix-structure level of the flow matrix and the generalized OD matrix are similarly 

related to their respective binarized forms, one may guess from Equation (30) that the binarized indirect flow matrix 

may have equal structure as binarized OD matrix minus binarized flow matrix (  L D F ).  In fact, this guess is 

incorrect because it is possible that for a given OD pair, both direct and indirect flows exist. That is, for an OD pair s-t, 

it is possible that some trajectories pass through the link st


directly and some pass indirectly through some path 

involving more than 1 link. Thus, the binarized alternative route flow T may have to be considered when both direct 

and indirect flow exists for a given s-t pair. 
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