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Abstract— Graphs are very important mathematical structures 

used in many applications, one of which is transportation science. 

When dealing with transportation networks, one deals not only 

with the network structure, but also with information related to 

the utilization of the elements of the network, which can be 

shown using flow and origin-destination matrices. This paper 

extends an algebraic model used to relate all these components 

by deriving additional relationships and constructing a more 

structured understanding of the model. Specifically, the paper 

introduces the concept of mutually exclusive matrices, and shows 

their effect when decomposing the components of a Hadamard 

product on matrices. 

 

Keywords— network theory and technology, ICT, intelligent 

transportation 

I. INTRODUCTION 

Graphs in computer science have many different 

applications. In the specific context of traffic and 

transportation science, graphs are used to represent 

transportation pathways and are used extensively for urban 

planning schemes. As additional information used in tandem 

with transportation network, trajectory data from pedestrians 

and other elements of traffic such as cars, motorcycles, and 

other vehicles are gathered through several tracking methods 

which usually involve the usage of GPS sensors. Because all 

of these concepts are related, it is useful to see if it is possible 

to discover close relationships between the network data and 

the trajectory data, in order to arrive at better methods for 

deriving one from the other. 

The previous study of Teknomo and Fernandez [1] divides 

the network analysis into two components – network structure 

and network usage. Network structure corresponds to the 

static part of the network (such as the road network), while the 

network usage corresponds to the dynamic component (e.g. 

vehicular movements). Several matrices were described in 

order to capture some important concepts in each of these 

components. The described matrices were further analysed in 

three levels – set level, count level and binarization level. 

Trajectories are useful for aggregating information into 

traffic flow, which can then be used to obtain the origin 

destination (OD) matrix. In fact, [1] linked the OD matrix, 

flow, and trajectories into a unified mathematical model. 

This paper extends that model to better strengthen these 

relationships, and shows additional interesting conclusions 

regarding some of the elements. Specifically, we define 

mutual exclusivity for matrices, and explore pairs of matrices 

that satisfy this property. The additional relationships among 

matrices that were surfaced are then used to decompose 

further the analysis of the interaction between network 

structure and usage. 

II. PRELIMINARIES 

In this section, we define important terms and values in this 

paper, and present algorithms for acquiring some of these 

values as described in [1]. 

A trajectory is the path or route taken by a moving agent or 

traffic element within a specified observation period from t1  

to t2, where t1 < t2. This path is denoted by a sequence of 

points that the agent travels through. For the purposes of this 

paper, we assume that agents do not visit the same point more 

than once; thus, the trajectories have no cycles.  

A trajectory in a practical sense can be mapped to a latitude 

and longitude, but for the sake of simplification, it is helpful 

to map trajectories to network graphs. When only the relative 

order of visited points (or nodes) is recorded, and the exact 

time of visits is discarded. These trajectories are called ordinal 

graph trajectories. With these trajectories, we can now deal 

with several pertinent network-related structures, defined 

below. 

Given a network with   nodes, the representation of the 

network is given by an adjacency matrix  , where each 

element in the matrix has a binary (0,1) value to represent the 

absence or presence of an edge or link between pairs of the 

nodes of the network. The distance (path) matrix   is another 

matrix whose elements contain the length of the shortest path 

between the corresponding nodes of the network. These 

matrices are standard in graph theory literature. The adjacency 

matrix is given for any graph, while the distance matrix can be 

easily computed using the Floyd-Warshall algorithm in       
time. As a note, this paper deals with directed graphs, so the 

adjacency matrix is not necessarily symmetric. 



We also define a third matrix: the external matrix  . We 

define it to be the matrix computed from the difference 

between   and  . This operation is a simple element-wise 

subtraction and thus   can be also computed in       time. 

The above three matrices are considered to be static, as they 

do not generally change during observation. They are matrices 

that represent structural properties of the network. In many 

cases, we may simply be interested in a binarized form of the 

matrices. The binarized forms of   and   are represented by 

P  and E , respectively.  The binary matrix P  is defined as: 

 ,

,

1 if 0

0 otherwise

i j

i j

  





p
p  

The inverted breve operator on the matrices represents 

binarization of those matrices. Note that   is the symbol 

given for when no path exists between two nodes, when 

computed by the Floyd-Warshall algorithm. The binarized 

form E  of the external matrix is defined similarly to the 

above definition for P . 

We can now define several additional matrices related not 

to the structure of the network, but to the utilization of this 

network by the trajectories. The flow matrix   is the matrix 

whose elements contain the number of trajectories (flows) 

going from some source node to some sink node directly (i.e., 

using the direct link or edge between the source and sink.) 

Note that any trajectory using the edge (i, j) contributes to the 

flow matrix element     . The OD matrix  is the origin-

destination matrix, whose elements contain the number of 

trajectories from a source to a sink using any possible path in 

the network. In contrast to the flow matrix, the OD matrix 

cares only about how many trajectories go from source to sink 

nodes, but disregards their choice of path when in the 

presence of multiple possible paths to take. Traditionally, OD 

matrices only deal with specific source and sink nodes 

(chosen for their importance in a network), but this model 

uses a generalized OD matrix that tracks information on all 

pairs of nodes in the network. 

The indirect flow matrix   is similar to  , except it counts 

only those trajectories that explicitly do not use the direct link 

between the given pair of nodes. Two more matrices related to 

  are defined:   is the alternative route flow matrix which 

counts indirect flows between nodes where a direct link 

actually exists but is not chosen by the moving element 

(trajectory), and    is the substitute route flow matrix which 

counts indirect flows between nodes where no direct link or 

edge exists between these nodes. 

The above five matrices   ,  ,  ,  , and   , deal with the 

utilization of the network. They also have binary forms 

defined similarly, and are denoted by F , D , L , T , and 
C

T
respectively.  

III. RELATED LITERATURE 

In the context of transportation planning, there are many 

different types of analysis available and many different 

scientific problems to tackle. One example of these problems 

is the traffic assignment problem, which attempts to predict 

the traffic within a given network. From observed data, an 

origin-destination (OD) matrix is derived, and its elements 

refer to the expected number of traffic elements (trajectories) 

going from some origin node to some destination node. On 

each of the links, we can also create a measure of the traffic or 

flow in that link, which we encapsulate in a flow matrix. The 

traffic assignment problem deals with predicting the flow 

within the links of the network given the OD matrix 

information. This type of prediction is very important for 

many fields, such as urban planning in the context of road and 

street networks. 

There are many studies in the field of transportation science 

that deal with methods of acquiring these matrices and other 

related information from real-life data. One important piece of 

information is trajectory data. Some methods use GPS sensors 

to capture precise position data and process it automatically to 

generate trajectory information [2]. Other methods use speed 

data instead for determining trajectories of vehicles [3]. Other 

methods involve image processing to track vehicles, and even 

to classify them into different types, such as trucks and 

motorcycles [4]. After data is gathered through different 

methods, software packages created [5] may be used to 

analyze the data automatically.    

In many cases, traffic data that is gathered is essential to 

creating good estimates and predictions on transportation 

networks. Much research has been devoted to estimating 

origin-destination matrices with traffic counts as input, and 

there are already several classical solutions to this problem, 

and variants thereof [6] [7]. Many methods attempt to relieve 

humans of costly data-gathering methods. Instead of using 

surveys, observed link flows [8] or traffic counts on 

intersections [9] can be used instead. Many different methods 

also have different considerations, or may attempt to do 

different variations of the problem. Some methods do OD 

estimation that considers multiple-vehicle data [10], while 

others attempt to do dynamic estimation [11]. 

IV. PREVIOUS MODEL 

The previous model [1] showed the relationships between 

the matrices  ,  ,  ,  ,  ,  ,  , and   , for different forms: 

matrix, binarized matrix, and matrix-set. We can divide them 

into structural matrices and utilization matrices (also called 

usage matrices). The structural matrices are the following:  , 

the adjacency matrix;  , the external matrix; and  , the 

distance matrix. The utilization matrices are the following:  , 

the generalized OD matrix;  , the direct flow matrix;  , the 

indirect flow matrix;  , the alternative route flow matrix; and 

  , the substitute route flow matrix. 

The previous model derived two sets of equations and 

inequalities; one that is valid for all instances, and one that is 

valid only for fully utilized networks. (Fully utilized networks 

are networks for which every link in the graph is used by at 

least one trajectory.) Table 1 below shows a summary of these 

results. 

We take note of several notational points regarding the 

results of the previous model: First, the  ̃ notation for some 



matrix   refers to the matrix-set-level analysis for that matrix; 

however, this is beyond the scope of this paper. Second, the  

operator refers to the Hadamard product of two matrices, 

which is an element-wise multiplication of the elements of the 

matrix operands
1
. Third, the term fully utilized refers to a 

network for which each of the edges is traversed by at least 

one trajectory. The results of this paper do not make any 

distinction between fully utilized and non-fully utilized 

networks, and are thus generalized for all types of networks. 

TABLE I 

SUMMARY OF THE MAIN RESULTS OF [1] 

Valid for all instances Valid only for instances 

involving fully utilized 

networks 

E P E  and A P A   

F A  and F A F  F A  

D P and D P D  D P  

F D , F Dand F D   

T A L , T A L  and

T A L  

 

   
C

F T A D D T  
 

 T A D F and


C

T E D  

 

 L T E D  

  A D D E D  

 D P D  
  F A D T  

 

V. EXTENSIONS TO THE MODEL 

This paper shows some additional relationships between the 

different matrices in the model. These relationships are 

grouped into the following meaningful categories. 

a. Mutually exclusive matrices 

b. Substitute route flow-related equations 

c. Alternative route flow-related equations 

d. Total indirect flow-related equations 

e. Other equations 

f.  Exceptions and wrong equations 

We shall now describe each of the categories. 

A. Mutually Exclusive Matrices 

In this study, we introduce the concept of mutually 

exclusive matrices. Two n x m matrices   and   are said to be 

mutually exclusive if and only if the following holds: 

, ,
0 0 1 ,1

i j i j
i n j m       x y  

                                                 
1
 We must be careful not to try dividing the equations involving Hadamard 

products.  For example, the equation       does not indicate that in all 

cases     (the all-ones matrix); in fact, entrywise division is problematic if 
the divisor contains zero entries, which in the field of transportation networks 
is almost always true. 

That is, the two matrices do not have corresponding 

nonzero elements. Consequently, the Hadamard product of the 

two matrices is a zero matrix.  

0X Y  

Mutually exclusive matrices capture the idea that 

corresponding elements of two matrices cannot co-exist. 

1)  Adjacency matrix and external matrix: The first examples 

of mutually exclusives matrices we can show are the 

adjacency matrix and the binarized external matrix. We use 

the binarized form because it disregards any length, as well as 

eliminates any problems with the   symbol, such as when we 

attempt to multiply  with 0, which is undefined.  We note 

that if the elements of a matrix are only zeros or ones, then 

multiplying a matrix with itself will result in the same matrix. 

We also note that the adjacency matrix is binarized, by 

definition. Our first result may be expressed in the following 

equation. 

A E 0  (0) 

Equation (0) has two operands that describe the structure of 

the network. Recall that E  is given by  E P A , where P  

is the binarized path matrix. This means that P  simply 

represents whether nodes are reachable from other nodes, and 

not the minimum number of edges necessary for such a 

traversal. The previous study also proved that A P A . 

Using these, Equation (0) can now be derived as follows:  

( )( ) 

 

 



A E P A P A

PPA PAA

PA PA

0

 

Thus, the adjacency matrix and the binarized external 

matrix are mutually exclusive. 

2)  Structure vs. Usage 

C
A T 0  (0) 

C
A T 0  (0) 

F E 0  (0) 

F E 0  (0) 

T E 0  (0) 

T E 0  (0) 

The above six equations show that there are matrices for 

which the Hadamard product is the zero matrix. The 

Hadamard product is the result of element-wise multiplication 

for 2 matrices having the same dimensions. We will show the 

proofs for the above equations, and also describe their 

significance. 

Equation (0) can be proven as follows: For any two nodes i, 

j, either there is an edge (i, j) between them, or there is no 

edge. In the first case,       , but by the definition of   , no 

substitute route flow can exist between the nodes if a link 

exists between the two nodes. Therefore,     
    in this case, 

and the product          
   . In the second case,        



because there is no edge between the two nodes; thus, we also 

get a product of 0.  

For equation (0), the proof is done similarly, except that 

C
T  will always have either 0 or 1 for each of its elements, 

and the corresponding elements for   will have the other 

value. This implies that the product will always be the zero 

matrix. 

The proof of equation (0) is similar to the proof of the 

above two equations. The matrices E  and F can be shown to 

be also mutually exclusive:        when        (because a 

flow on some link (i, j) cannot exist if the link itself does not 

actually exist), so multiplying        with either zero or one 

is still zero. In the second case, if        , then there may be 

trajectories that exist that utilize the edge (i, j), so       . 

However,        if       , so the product is still zero. 

The proofs for equations (0), (0), and (0) are similar to the 

proofs outlined above and will be omitted here.  As a note, the 

alternative route matrix   is similar to   in that trajectories 

may contribute to the number of alternative routes taken from 

some node i to some node j only if a direct link (i, j) exists. 

[1] described how certain matrices (     ) represent some 

aspects of the structure of the graph, and how others (such as 

  and   ) describe the usage of the network by trajectories. 

We notice that the above six equations multiplied a structural 

matrix by a usage or utilization matrix. Although it is not 

always the case that multiplying a structural matrix by a usage 

matrix will result in the zero matrix, the above equations show 

tighter relationships between some pairs of structural matrices 

and utilization matrices. 

First, the adjacency matrix   and the external matrix E  are 

both structural matrices that are mutually exclusive, as shown 

in equation (0). From the definitions of   and  , it is apparent 

that direct flows and alternative route flows can only exist in 

the presence of direct links. Thus, these “derivatives” of   are 

also mutually exclusive with  , because when they are 

multiplied by the external matrix  , will always result in the 

zero matrix (see equations (0) through (0) above). 

Equations (0) and (0), however, suggest that the (binarized) 

external matrix E  is closely linked to the substitute route 

flow matrix   . Though the original model suggested that E  

is associated with the indirect flow matrix   , the above 

relationships would suggest that a tighter association lies 

elsewhere. Based on the properties of  E P A  in relation to 

P  and  , specifically, that 
,

1
i j
e if and only if 

,
1

i j
p  but 

      , then it appears that E  is the structural matrix that 

directly corresponds to the usage matrix   : by definition of a 

substitute route flow, we see that     
    if and only if there is 

a path from node i to node j (meaning 
,

1
i j
p ) but there is no 

direct link between them (      ). This means that     
    

only if 
,

1
i j
e .  An informal way of stating this relationship 

is that E  represents the possibility of having substitute route 

flows (  ): if 
,

0
i j
e , no substitute route flows from i to j 

can exist.  

We can then see how equations (0) and (0) make sense: 

when we multiply   by a “derivative” of E , specifically   , 

then we produce the zero matrix. 

We observe that in addition to   and E  being mutually 

exclusive, we can get more pairs of mutually exclusive 

matrices by getting a usage matrix that is the derivative of 

either   or E , as seen in the above equations. This usage 

matrix may or may not be binarized, but the relation still holds. 

3)  Usage vs. Usage 

C F T 0  (0) 

C F T 0  (0) 

C F T 0  (0) 

C F T 0  (0) 

We now investigate the case where both the matrices 

involved are usage or utilization matrices which are originated  

from   and E . We select   as a usage matrix derived from  : 

we notice that by definition, a flow      may only exist if 

      , that is, an edge (i, j) exists. We also select 
C

T  as a 

usage matrix for E  (see the previous subsection for more 

details on this relationship). We show a proof for equation (0), 

and skip the proofs for the other equations as they simply 

involve the binarized forms of the matrices, and thus have 

similar proofs. 

[1] proved that F A F  and 
C
T E D . Our proof for 

equation (0) then goes as follows: 

( ) ( )

( )

C








F T A F E D

A E F D

0 F D

0

 

The above proof is a direct result of the mutual exclusivity 

of   and E . 

As an alternative proof, we can also prove this through an 

element-wise derivation: Given two nodes i and j, either the 

edge (i, j) exists, or it does not. If it does, then     
     

because no substitute route flows can exist when a direct edge 

exists, as by definition. The value of      is then irrelevant, as 

the product will still be zero. In the second case, since there is 

no link between i and j, then       , and the product will 

remain zero. A similar proof can be done for the other 

equations involving the binarized forms of   and   . 

We thus see that F and   , both usage matrices, are 

mutually exclusive matrices. 

Another set of exclusive matrix pairs may be derived from 

the definition-based exclusivity property of the alternative 

route and substitute matrices T and   .  
C
T T 0  (0) 



C
T T 0  (0) 

C
T T 0  (0) 

C
T T 0  (0) 

The above equations can be readily shown to be true using 

the definitions of alternative route flows and substitute route 

flows: the first can only exist when a direct edge exists, and 

the second only when a direct edge does not exist. 

B. Substitute route flow-related equations 

We will now show equations related to the substitute route 

flow matrix   . 
C C
D T T  (0) 

C C
L T T  (0) 

C C
E T T  (0) 

C C C
T T T  (0) 

The above four equations can be easily shown to be true. 

Whenever     
   , there is at least one trajectory that goes 

from node i to node j indirectly; therefore, both        and 

      , and 
, ,

1
i j i j
 d l . (The case     

    is trivial 

because multiplication by zero results in zero, which preserves 

the equality.) This proves equations (0) and (0). Because    

also implies the absence of a direct link between i and j, then 

       and 
,

1
i j
e , thus proving equation (0). Finally, 

,
1

C

i j
t  whenever 

,
1

C

i j
t , and a multiplication by 1 preserves 

the equality, proving equation (0). Note that the above 

equations multiply    with a binarized matrix, and all of them 

except for E  are usage matrices. 

We now investigate cases where we instead multiply 
C

T
with other usage matrices. 

C C
D T T  (0) 

C C
L T T  (0) 

C C
D T T  (0) 

C C
L T T  (0) 

We note that   is the indirect route flow matrix, which may 

be decomposed into two mutually exclusive matrices,   and 

  , using the formula       . (This is clearly shown by 

the fact that there is either a direct link between any two nodes, 

or there is none.) We observe that whenever a substitute route 

flow exists, i.e., 
,

1
C

i j
t , then 

,
0

i j
t by definition. Because 

      , then if a substitute route flow exists,          
 , 

and the product in equation (0) holds. Equation (0) can be 

analyzed similarly:      consists of direct flows     , alternative 

route flows     , and substitute route flows     
 . However, if 

substitute route flows exist for some pair of nodes i and j, then 

the edge (i, j) does not exist, and thus no direct flows or 

alternative route flows exist. This means that if 
,

1
C

i j
t , then 

     pertains only to the number of substitute route flows, and 

the product holds. The proofs for equations (0) and (0) are 

similar and are thus omitted. 

C C
E T T  (0) 

Equation (0) shows a relationship between E  and 
C

T . 

When 
,

1
C

i j
t , this means that a substitute route flow exists; 

this implies that there is no edge (i, j)  yet a path from i to j 

still exists. Also, by definition of the external matrix, 

, , ,
1

i j i j i j
  e p a if and only if 

,
1

i j
p  and       . This 

means that if a substitute route flow exists from node i to node 

j, then 
,

1
i j
e , and the product holds for this case. In the case 

where 
,

0
C

i j
t , no substitute route flow exists, we are simply 

multiplying by zero. This proves the equation.  
C

E L T  (0) 

For equation (25), it can easily be seen that if 
,

1
i j
e for 

some i, j, then no direct link exists between these nodes, and 

thus no direct flow or alternative flow can exist. This means 

that the total number of all indirect flows      will be substitute 

route flows only. On the other hand, if 
,

0
i j
e , then no 

substitute flows exist, the product is therefore zero, and the 

equations hold. This ties in neatly with an equation proved in 

the previous model, which deals with the OD matrix: 
C

E D T . 

C
E L T  (0) 

C
E D T  (0) 

Equations (0) and (0) are simply variants of the above 

equations, but using the binarized forms instead. The proofs 

are similar are will be omitted. 

In conclusion, this section showed how multiplying    (or 

its binarized form) with a matrix that subsumes these matrices 

(such as   or  ), results in the matrix    itself (or its 

binarized form, but only if both operands are binarized). In the 

same vein, multiplying E  with   or   produces    (or its 

binarization, if   or   are binarized as well). We note that   

can be decomposed into its two components through     
  . We also note that since a flow from some node to another 

node can only be either direct or indirect, then   may be 

decomposed into          as well. 

C. Alternative route flow-related equations 

For alternative route flow, we can derive a similar set of 

equations to the substitute route flow-related ones. 

L T T  (0) 

The proof of equation (0) is similar to that of equation (0) 

in that it uses the mutual exclusivity of the two types of 

indirect flows. Because there are only two types of indirect 

flows, then 
,

1
i j
t  implies that      pertains solely to the 

count of alternative route flows, and the equation holds true. 

(The zero case is trivial.) 



D T T  (0) 

L T T  (0) 

D T T  (0) 

L T T  (0) 

Equations (0) and (0) can be proven by showing that 

, ,
1

i j i j
 d l  whenever alternative route flows exist (because 

the two matrices simply refer to the presence of OD flows and 

indirect flows, respectively), and 0 if alternative route flows 

do not exist, thus proving the equation is true for all cases. 

Equations (0) and (0) simply use the binarized form of   and 

can be proven similarly to the above. 

A T T  (0) 

A T T  (0) 

Equations (0) and (0) are interesting in that they now deal 

with the adjacency matrix. We can prove equation (0) by 

showing that       implies       , because by definition 

alternative route flows can only exist in the presence of direct 

links. This results in a multiplication by 1. The other case is 

when       , which results in a product of zero. The 

equation is then proven true, and a similar proof for equation 

(0) can be created. 

 As a note, we see more instances of the 

decomposition of matrices in our Hadamard products. The 

matrices   and   both subsume the alternative route flows, 

and we see similar results as with the substitute route flows: 

multiplying   (or its binarization) with either of the two 

matrices above or their binarizations results in  , but if both 

operands are binarized, we get the binarization of   instead. 

D. Total indirect  flow-related equations 

There are some additional relationships that are centered on 

the indirect flow matrix   that were not outlined in the 

previous model. 

D L L  (0) 

D L L  (0) 

L L L  (0) 

The proof for these equations can be shown by observing 

that whenever an indirect flow exists (meaning       , or 

equivalently 
,

1
i j
l ), then we are simply multiplying by 

, ,
1

i j i j
 d l , because these binarized matrices simply denote 

the existence of OD flows or indirect flows, respectively, and 

in this case the equations holds. In the case where

, ,
0

i j i j
 l l , we are multiplying by zero, which preserves the 

equality.  

E. Other equations 

In this section, we present a few additional equations that 

were not covered in the previous model. This section serves to 

make the extensions to the model as comprehensive as 

possible. The equations here focus on the flow matrix   and 

the OD matrix  . 

F F F  (0) 

D D D  (0) 

Equations (0) and (0) are relationships of the same form, 

and they can be proven true by observing that in these 

equations we are multiplying elements in   (or elements in  ) 

by zeros if that same element is zero, and multiplying by one 

if that element is nonzero. In both cases, the equation holds. 

D F F  (0) 

D F F  (0) 

The proof for equation (0) is as follows: if       , then 

trivially the product is zero. If       , then 
,

1
i j
d , and the 

product is therefore 
, , , ,

1
i j i j i j i j
   d f f f  which proves the 

equation. Equation (0) is proven similarly. 

A F F  (0) 

Equation (0) is simply the binarized version of one of the 

equations in the previous model:      . To prove the 

equation, we simply need to observe that if       , then as a 

result of not having a direct link, 
, ,

0
i j i j
 f f , and the 

equality holds; however, when        then we are simply 

multiplying by the multiplicative identity, proving the 

equation true.  

F. Exceptions and wrong equations 

In this section, we present a few examples of equations that 

are are false, to show that deriving these relationships is not as 

simple as pairing related matrices together. 

Let us consider the equation E L L . One may expect 

this to be correct, considering that E  denotes the possibility 

of having a substitute route flow, which is a type of indirect 

route flow. However, this equation is not true for all cases; it 

is only true for cases where there are no alternative route 

flows. Consider the following graph in Figure 1. 

 

Fig. 1  A directed network graph 

If we assume only one trajectory using the network, and 

this trajectory uses the path A-B-C-D, then it is easy to see 

that there is an alternative route flow from B to D, that is, 

     . We note that this also means      . We now 

consider E . In this graph, 0BD E . Therefore, when we 

multiply, 0 1BD BD BD  E L L , thus the equation is not 

true for all cases. 

VI.  CONCLUSION 

This paper extended the theory that relates different 

essential components of traffic analysis, specifically 

trajectories, (generalized) OD matrices, and flow matrices. We 

A

A 

B

B 

C

C

D

D 



derived new equations in this study and strengthened our 

understanding of the model to show mutual exclusivity 

between direct flows and substitute route flows, as well as 

between alternative route flows and substitute route flows. We 

showed cases where performing a Hadamard multiplication 

using two matrices where the first matrix subsumes the second 

results in the second matrix, essentially decomposing the first 

matrix into its components and removing everything else but 

the second. These patterns allow us to easily create and 

simplify algebraic equations involving these essential 

network-related matrices to show new relationships. 

We can now show a correspondence between the matrices. 

TABLE II 
GENERAL CORRESPONDENCE FRAMEWORK OF THE NETWORK MATRICES 

Structure Network Utilization 

  (adjacency matrix)   (flow matrix) 

  (distance matrix)   (OD matrix) 

   (indirect flow matrix) 

   (alternative route flow 

matrix) 

  (external matrix)    (substitute route flow 

matrix) 

We noted that   does not precisely denote the structure for 

 , but for   instead:   denotes the potential of having 

substitute route flows. The table shows that we may still need 

to find structural matrices for   and  , and definitions and 

algorithms for solving their values. 

Further work that is being done investigates the existence 

of cycles within the trajectory inputs, as well as exploring 

additional structural matrices that correspond to the indirect 

flow matrix and the alternative route flow matrix.  
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