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Abstract 

In this paper, we describe a new approach for modelling route choice in pedestrian 
dynamics simulations. The model is stated in the mesoscopic paradigm using a queuing 
network graph based on agents’ local decision. Contrary to traditional models, route 
choice here is not given exogenously but emanates as a consequence of the prescribed 
behavioural patterns of the various agents. Consequently, the route choice probability and 
travel time are outputs to the simulations rather than inputs. By “route choice self-
organization (RCSO)” we denote the phenomenon that agents autonomously and 
endogenously during the simulation decide to change their plans with respect to route 
choice. The model is illustrated in a demonstration example in a network graph.  
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INTRODUCTION AND RELATED WORK 

In this paper, we describe a new approach for modelling route choice in pedestrian 
dynamics simulations to produce route choice self-organization (RCSO). By “route 
choice self-organization (RCSO)”, we denote the phenomenon that occurs in situations of 
medium to high density of pedestrians where some pedestrians will accept deviations in 
order to avoid crowded situations arising on the shortest route. This phenomenon is often 
observed in real crowded scenarios. 
 
The multi-agents pedestrian movement model proposed in this paper is stated in the 
mesoscopic paradigm using a queuing network graph, which contains a regular lattice as 
a special case. In contrast to conventional traffic assignment methods (see e.g. Ortuzar 
and Willumsen, 2001) that assign pedestrians to specific routes (either precalculated or 



continuously updated during the simulation) based on expected travel times, our model 
allows for an autonomous choice of the route of the single agents during runtime based 
on local information. Thus, the route choice probability as well as the travel time are the 
outputs of the simulation rather than the inputs. Route choice hence emanates as a 
consequence of the prescribed behavioural patterns of the various agents.  
 
In the model, walkable space is represented using a directed network graph, where the 
cells of the lattice constitute the vertices and the neighbourhood interconnections between 
the cells the edges. The regular lattice used e.g. in cellular automata models is a special 
case. The extension of each cell in the network graph may range from a small grid as 
typically used in cellular automata models (e.g. 0.4m square) to broad cells (e.g. 4 m 
square). The movement of the pedestrian agents is governed by two levels of detail:  

• Movement within the cell follows a macroscopic description based on the 
fundamental diagram. 

• Once the pedestrian hits the boundary of the cell, she has to choose the next cell. 
This choice is the core of the model and assumed to be made based on a local 
trade-off between the navigation (i.e. getting closer to the exit) and crowdedness 
of the adjacent cells.  

Thus, the modeller needs to supply a fundamental diagram and the parameters governing 
the local trade-off between choosing the shortest path and unease for crowded situations 
while the outcome of the models is the flow on the links of the network graph (from 
which route choice can be obtained) as well as the movements of each single pedestrian. 
 
The proposed model is an extension of the mesoscopic model presented in Teknomo & 
Millonig (2007) in various aspects. While Teknomo & Millonig (2007) only considers a 
regular grid, in this contribution a general network graph is allowed for, including 
multiple edges connecting two cells. Furthermore the emphasis in this paper is on route 
choice rather than navigation, i.e. dealing with situations where many pedestrians try to 
find their way in an environment they are familiar with, while Teknomo & Millonig 
(2007) dealt with pathfinding for single pedestrians in unfamiliar territory. Depending on 
the choice of the network graph and the parameters, the model falls into the microscopic, 
the macroscopic or the mesoscopic level. In the extreme case, the whole space is 
modelled as only one cell and the movement is fully governed by the fundamental 
diagram. Such a model clearly is macroscopic as the interaction of pedestrians is 
modelled using flow-density relations. In this respect the model can be seen as an 
extension of the queuing network model proposed by Lovas (1994).  
 
On the other end of the scale using cells with a small equivalent length such that per time 
step one cell is traversed by each pedestrian and the maximum space capacity of the cells 
is equal to one pedestrian the main component of the model is the decision of the next 



cell to enter and the model is considered to be microscopic. In this case the model can be 
viewed as an extension to the cellular automata model documented in the literature (see 
e.g. Blue and Adler (2000), Kretz and Schreckenberg (2006), Schadschneider (2001)) by 
adding on-route route choice capabilities to the agents.  
 
Finally using a regular grid with a side length of 1m to 4m, for instance, we obtain a 
mesoscopic pedestrian simulation model where each cell may be occupied by a number 
of pedestrians. In contrast to the model of Florian et al (2001) and Hanisch et al (2003) 
the model presented in Teknomo & Millonig (2007), on which the proposed model is 
based, represents each pedestrian as an individual agent. Furthermore, in this mesoscopic 
model, not only the pedestrian flow is modelled but also every pedestrian is represented 
as an intelligent agent who keeps the timing of entering and leaving a cell. Mesoscopic 
models achieve numerical superiority in comparison to microscopic models by 
introducing simplifications and omitting details. In particular, detailed pedestrian 
movement in continuous space and detailed pedestrian behaviour (e.g. collision 
avoidance behaviour) are omitted. 
 
The paper is organized as follows: The next section provides a detailed description of the 
proposed model including a discussion of the concept of sink propagation value (SPV). 
Before the conclusion, we illustrate the model using a simple demonstration example.  
 

THE PROPOSED MODEL 

In this section, the proposed model is discussed. In the model, the walkable space is 
represented using a three-dimensional non-planar directed multi-graph as it may contain 
multiple edges (e.g. if there are multiple routes connecting different vertices such as stairs 
and escalators in parallel). The edges correspond to cells partitioning the walkable space.  
 
Definition 1: The set of followers of vertex v , denoted by ( )vΓ , is the set of adjacent 
edges that are incident from vertex v . The predecessors (denoted by 1( )v−Γ ) are the sets 
of adjacent edges incident to vertex v . By neighbourhood of a vertex we denote the set of 
all vertices that are connected to a vertex including itself. 
 
Each vertex in the graph is either contained in a basin (representing entry points, exit 
points or service counters) or a mere connection point between edges. There is no 
limitation on the number of agents that can be accommodated within a vertex. Each edge 
in the graph represents real space such as rooms, doors, or facilities such as stair, ramp, 
elevator, and escalator, etc. Therefore, space constraints occur which is formularized in 
the following definition:  
 



Definition 2: The space capacity of an edge i j  connecting vertices i and j is the product 
of equivalent length i j , equivalent width i jω and agents’ perception on maximum 

density maxρ . 

maxi j i j i jc ω ρ= (1) 
Here the notion “equivalent width” and “equivalent length” are chosen because they may 
differ from actual width and length but represent other impedance factors rather than 
mere distance. Note in particular that the maximum capacity is hence influenced by the 
pedestrians’ properties. This makes it possible to model different perceptions of density 
for different agents. Space capacity, therefore, is a perceived capacity as apparent to the 
agents. The pedestrians are modelled as individual entities that move through the network 
graph. 
 
Definition 3: An agent is an autonomous discrete entity (i.e. pedestrian, vehicle, goods) 
that moves based on local behavioural rules from a cell contained in a set of starting cells 
(denoted as source basin) to a cell within a set of cells (denoted as sink basin) where his 
journey ends via visiting a number of intermediate sets of cells where activities take place 
(called saddle basin).  
 
Note that we use the notation “basin” rather than origin and destination as the term origin 
is used to refer to a single region where the agents start their journey while destination is 
used for a single region where the agents end their journey. In our notation, a source 
basin may consist of several not necessarily connected vertices such as e.g. different 
doors leading to the same street.  
 
Agent’s movement is directed from her origin vertex contained in a source basin to her 
destination vertex contained in a sink basin. Different agents might correspond to 
different source-sink-pairs while the presentation below will always be given from the 
perspective of one agent and hence refer to fixed OD-pair. The motion of pedestrians is 
modelled using discrete time steps by specifying behavioural updating rules in order to 
progress in simulation time. Movement within the cell is governed by a fundamental 
diagram which either can be supplied by the user from external sources or included in the 
model as follows: current speed tv  is adjusted based on current link density tρ  (number 
of pedestrians inside the cell) at int t=  (the time the agent enters the cell) and a speed 
density relationship given as ( )t tv f ρ= . Let max/ aji ρρ  be the normalized density based 

on agents’ perception of maximum density, then 

max max1 BetaCDF( ; , )i j
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where maxv denotes the maximal speed for the agent. Here BetaCDF denotes the 
cumulative distribution function of the beta-distribution, depending on two positive real 



parameters ,ς τ  in ( ]0,1  . The beta-distribution is chosen due to its flexibility and the fact 
that it is supported on (0,1]. The parameters of Beta distributions can take any positive 
real value (i.e. range in +ℜ ) but values in this range do not add any reasonable 
fundamental diagram hence we restrict the range. Using this velocity the time it takes to 
traverse a cell of equivalent length i j  equals tjiout vt /= . Since the model proceeds 

with a fixed time step dt  the actual time of leaving the cell, denoted as *t  is computed as 

⎡ ⎤outin ttt +=*  ( 3) 

Here the symbol .⎡ ⎤⎢ ⎥  denotes the smallest real such that kdttt in +=*  for some integer k  
where int  denotes the time the agent enters the cell.  
 
When leaving a cell and thus reaching a vertex, the agents decide which edge to enter 
next. This decision is taken autonomously based on a set of rules using the agent’s 
observation of the local environment. In our model, the agent’s sensing ability is limited 
to observe only the followers density and space capacity. Additionally the agents have 
complete information of a notion of distance to their assigned sink at each vertex, which 
is discussed below. The decision on which edge to enter next is determined by the 
interplay of four factors:  

1.  Permission: Here the permission value is a binary quantity indicating whether an 
agent is allowed to enter a certain edge at a specified discrete time t . It is 
determined by the connections present in the network graph, which might be 
temporarily closed. The permission value for a dynamic environment (e.g. door 
open and closed) can be obtained through interactive removal and addition of 
edges during the simulation running time and is represented by the set ( , )i tΓ  
containing only those edges inside the followers of vertex i  that are permitted at 
time t . 

2. Interaction between pedestrians is represented by a function of edge density. If 
the edge density is high, the attractiveness to go to that edge is reduced. Suppose 
the agent’s position is in vertex i  and let j  be an edge contained in the followers 
(by convention the edge connecting a vertex with itself is always contained). Let 

i jρ  be the current density of edge )(ij Γ∈  and i jc  the maximal capacity of edge 

j. Then the interaction weight at edge j is given as 

Again, we are using the cumulative distribution function of the beta-distribution 
( )BetaCDF ; ,x α β . Here, jiji c/ρ  is the edge density ratio.  

3. Navigation is represented by the concept of sink propagation value (SPV) 
discussed in more detail in the next subsection. For the moment, it suffices to say 
that the SPV can be seen as a function measuring the distance of the vertices to 

1 BetaCDF( ; , )i j
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the sink basin. Let iv  and  jv  be the sink propagation values of the current vertex 
and the vertex reached via the edge j in the followers respectively. Then the 
normalized SPV difference at the current vertex is defined as follows:  
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This definition makes sense, whenever the denominator is strictly positive which 
will always be the case outside of the sink basin. 

4. Finally, the dynamics enter the decision problem via the temporal dependence of 
the interaction and the permission term.  
 

The decision then is done deterministically based on maximization of the attractiveness 
(modelled as the product of the interaction and the navigation term) of the edge: The 
selected edge k  is given by 

ijij
tij

NIk
),(

maxarg
Γ∈

=  ( 6) 

 
In cases of a draw (i.e. two equally attractive edges), randomly an edge amongst the 
edges of best SPV improvement within the set of optimal attractiveness is chosen. 
Although the interaction term should prevent collisions (i.e. agents wanting to move into 
cells which are already full) this may happen for some choices of parameter values (e.g. 
if the navigation part gets a high weight). Hence, if an agent tries to enter an already full 
cell, she is stopped and remains in her current cell.  
 
Thus the pedestrian simulation model has six parameters to be calibrated which areφ  
and ϕ  for the interaction, ϑ  and θ  for navigation, ς and τ  for the speed-density 
relationship. Note that the fundamental diagram is the input of the model (through speed-
density relationship) rather than the output.  
 
This decision rule is based on two types of knowledge: navigation represents global 
information on a general distance function whereas the interaction term indicates local 
information on pedestrian densities. The global information includes full information 
regarding the network while the local information covers only a vertex and its 
neighbourhood. Global information is based on a function of sink propagation value 
while the local information is a function of the edge’s density. Both information is stored 
and accessed locally. At a decision vertex, each agent only requires to gain information at 
that particular neighbourhood of the vertex. The decision to move from one cell to the 
other cell is assumed to only take place in vertices. The decision on which edge to enter 
in the next step incorporates a local trade-off between getting “closer” to the exit (where 
the particular notion of closeness is represented in the navigation term) and the urge to 
avoid dense regions. The weights in this trade-off are implicitly influenced by the choice 
of the parameters in the beta-cumulative distribution functions. 



Sink Propagation Value 

With respect to navigation, we use a concept called “sink propagation value” (SPV). SPV 
is a function (monotonically increasing with increasing minimum distance from the sink 
as implied by the network graph) assigning a value to each vertex that is implementing a 
general notion of distance from the sink. The name derives from the fact that the 
calculation of the SPV typically is done by propagating the values from the sink node 
into all other connected nodes.  
 
Definition 4:  A function defined at each vertex of a directed network graph (where there 
exists a set of strictly positive values attached to the edges incorporating the notion of a 
distance between the vertices) is called a Sink Propagation Value (SPV) if the following 
properties hold: 

1. Positivity: 0iv ≥ . 

2. Zero at sink basin: 0sv =  for each vertex s contained in the sink. 

3. Infinity if the sink is unreachable from the vertex: iv i s= ∞ ⇔ →/   

4. Strictly monotonically increasing with increasing shortest distance from the sink: 
jssissji ddvv infinf >⇔> , where isd  is the shortest distance from vertex i  to 

vertex s  contained in the sink and the infimum is taken over all vertices 
contained in the sink. 

Various different SPV concepts can be obtained implicitly by using computational 
methods such as reinforcement learning (i.e. Q Learning), the Bellman flooding 
algorithm and the so-called distance transform. In this sense, the SPV represents global 
information of the network distance function that is stored locally at the vertices. Thus, 
we can also view the SPV as a transformation of the network global information into 
local information at each vertex. For a dynamic environment with many doors that 
potentially can be opened and closed during the simulation, every different configuration 
of open and closed doors leads to another SPV. For a large number of possible 
configurations pre-computation of all SPVs is computationally infeasible. Navigation 
algorithms for such dynamic environments can be found in Teknomo & Millonig (2007). 

Route Choice Self-Organization  

By route choice self-organisation (RCSO) we denote the phenomenon that the agents in 
the simulation deviate from the shortest path autonomously and endogenously during the 
simulation choose different routes in order to avoid dense regions. In this section, we 
discuss why the model proposed in the last section is capable of exhibiting this 
phenomenon.  



 
The RCSO emanates in relatively dense scenarios where the optimal route in terms of 
walking length is abandoned by pedestrians due to their preference to avoid crowded 
edges, i.e. in a sense pedestrians react to emerging congestions and implicitly they take 
the corresponding deviations into account. This can be demonstrated using a comparative 
static analysis analysing the choice between two alternative routes: At low levels of 
pedestrian flow, the navigation term will dominate the interaction term. Due to the 
navigation criterion to select the shorter route, edges that correspond to the shorter routes 
will be filled first. Increasing the flow level, the density on the shorter route will increase 
making the interaction term more important and the corresponding edge less attractive. 
Consequently, more pedestrians will choose the longer route to avoid regions of high 
crowd density. Increasing the flow levels even more up to a level where also the 
alternative route is congested the navigation again gains importance. This model 
conforms qualitatively to observations in real world scenarios.   
 
The choice of route occurs in the model as a self-organization phenomenon i.e. it is 
neither modelled explicitly nor controlled centrally but instead emerges as a consequence 
of the autonomous optimizations of the agents based on their sensing ability. The 
optimization is performed including global and local information. The global information 
guides agents’ navigation based on the SPV. Hence, it is assumed that the agent has 
perfect information on the infrastructure. The interaction on the other hand uses only 
local information represented as a generalized cost function of the perceived density on 
the edges adjacent to the decision vertex where the agent currently is located.  

ILLUSTRATIVE EXAMPLE 

The proposed model is illustrated in a simple model where it is demonstrated that 
contrary to conventional dynamic travel assignment (DTA) algorithms to provide route 
choice proportions and route flow of traffic assignment, the proposed method has no 
problems with complicated nested routes. For the numerical illustration, we use the 
following network graph: The network is illustrated on the left (where the distances 
between the vertices are provided in the edges and the numbers on the vertices are vertex 
identification numbers) and the corresponding sink propagation value (shortest path) of 
the network is shown in the right of Figure 1. 

 
Figure 1: Network example with distance (left) and SPV (right) 



 
 
The equivalent width is 0.999m for all links1. A hundred agents move from source vertex 
1 to sink vertex 6 with a maximum speed of 1.2 meter/second and a maximum density of 
4 pedestrians per square meter generated at once. The simulations are run with a discrete 
time step representing 1 second. 
 
As presented above the model contains six parameters to be calibrated which areφ  andϕ  
for the interaction, ϑ  and θ  for navigation, ς and τ  for speed-density relationship. 
These parameters are adjusted in order to minimize a criterion function. The details of the 
optimization are of no concern in this paper and will be discussed elsewhere. Note 
furthermore that there is no guarantee that there exists a unique global minimum. In fact, 
it will be seen below that this is not always the case. The main purpose of using different 
criterion functions is to show that different optimization strategies lead to different 
solutions. Viewing the parameters as different tradeoffs between minimizing path length 
and avoiding crowded regions this implies – maybe not surprisingly - that pedestrians 
need to use different tradeoffs in order to achieve different goals.   
 
We are going to optimize the trade-off in terms of three criterion functions: Minimum 
egress time, minimum average travel time and shortest distance.  
 

Minimum Egress Time 

Egress time is used in evacuation studies as the time span between the occurrences of the 
emergency until the last pedestrian exits the infrastructure. Ignoring the reaction time the 
illustration example shows a global minimum of egress time of 29 seconds for the 100 
agents. The global minimum is achieved e.g. by the three sets of parameters shown in 
Table 1: that create three evacuation strategy named A, B and C as shown in Figure 2. 
Strategy A and C produce the same distribution of route choices. Note that the search 
domain is limited to [0.01, 1]. Not surprisingly in all cases ζ=1 and τ=0.01 are chosen. 
This implies that in the fundamental diagram, speed is close to its maximal value even for 
high levels of density. The choices of the weighting of the interaction and the navigation 
term assure that pedestrians always move and never want to enter edges that are already 
                                                 
1 Equivalent width is chosen just below 1 meter in order for space capacity not to equal an integer quantity 
hence allowing velocity to drop to zero for density to reach 1. 

Table 1: Parameter set for minimum egress time 

 ς  τ  φ  ϕ  ϑ  θ Egress 
time 

Average 
Travel 
Time 

Average 
Travel 

Distance 

Average 
Travel 
Speed 

Average 
Total 
Links 

Total 
Route 

A 1 0.01 1 0.01 0.01 1 29 16.95 14.19 1.1889 3.36 8
B 1 0.01 1 1 0.01 0.01 29 16.91 14.23 1.1891 3.32 8
C 1 0.01 1 1 1 1 29 16.95 14.19 1.1889 3.36 8



full. Since the decisions of the agents are deterministic and chosen based on a 
maximization concept resulting in distinct choices it can be verified that in the vicinity (in 
the parameter space) of these choices the same qualitative behaviour prevails, while 
average travel speed can be increased to almost 1.2 m/s by lowering τ to a smaller 
positive value e.g. τ=0.001. 
 
Evacuation strategy A Evacuation strategy B Evacuation strategy C

  

  

 
ς  τ φ  ϕ ϑ θ  
1 0.001 0.065 1 1 0.065

 

Minimum Travel Time 

The average travel time is measured from the first time an agent enters the first edge until 
she reaches the sink node for all agents. It is interesting to find out that the route choice 
for the minimum average travel time is not necessarily the same as minimum egress time. 
Setting the minimum average travel time produces only a single set of parameters that 
produce a global minimum of 15.75 seconds 2 . The parameter set produces a route 
strategy with most pedestrians using the path sequence 1-3-5-6. It has the egress time of 
31 seconds, slightly higher than global minimum of egress time (29 seconds) and the 
average travel distance of 13.61 meter (which is also slightly higher than the shortest 
path). The average speed is 1.199 m/s and average total links is 3.03. 

                                                 
2 The search is not exhaustive. The minimum travel time for a single agent would be shortest path divided 
by max speed, which is 10.83 seconds in this case. 

Figure 2: Evacuation route strategies to minimize egrees time 

Table 2: Parameter for minimum travel time 



Shortest Path 

Calibration of the simulation to minimum average travel distance has produced many sets 
of parameters achieving the optimal result of all agents choosing the shortest path. A 
small sample of these parameter configurations is shown in Table 2. For most of these 
sets of parameters the route path sequence 1-3-5-6 is used. However, also the sequence 1-
3-4-6 produces a route of equal length, which is frequented by pedestrians for some 
parameter configurations. Another possible shortest route (sequence 1-3-4-5-6) did not 
occur in any of the obtained models maybe due to the incomplete search.  

 
ς  τ  φ  ϕ  ϑ θ Egress 

 time 
Average 

Travel 
Time 

Average 
Travel 

Distance 

Average  
Travel  
Speed 

Total 
Route 

1 0.1 1 0.1 0.98 1 44 18.1 13 1.0246 1
0.57 0.1 0.53 0.1 1 0.1 52 21.55 13 0.92849 1
0.1 0.1 0.1 0.1 1 0.1 82 33.11 13 0.51145 1

1 0.52 0.52 0.18 1 0.88 116 33.86 13 0.41952 2
1 0.81 0.81 0.1 1 1 286 73.91 13 0.25646 1

 
Finally, it should be noted here that the parameters for the fundamental diagram are of no 
importance as they do not affect the route choice in this example but only the average 
travel time. Hence, in Table 3 the parameters ς  and τ  could be changed to arbitrary 
other values without changing the travel distance.  
 
This example shows that for different criterion functions (egress time, minimum average 
travel time and minimum average travel distance) different parameter sets produce 
optimal results. While pedestrians have only limited capability to influence the 
fundamental diagram, they can influence the trade-off between navigation and 
interaction. The proposed model might be of help in modelling the trade-off usually 
employed and accordingly evaluate the design of the infrastructures. 
 

CONCLUSION 

The route choice self-organization can be seen as a new and novel alternative to existing 
multi-agent dynamic traffic assignment models. The proposed model is using a local 
trade-off between agent’s navigation and interaction which is much simpler than 
traditional DTA for complex routes and it is useful when the detailed movement of 
pedestrians is in the focus of attention and the space is larger than a single room. At this 
level of detail, the interaction of pedestrians with obstructions is not considered to be 
important. The main output of the model is the dynamic flow from one spatial region 
(e.g. building, floor, or room) to another spatial region. The proposed model is flexible in 

Table 3: Set of parameters for minimum average travel distance 



the choice of the level of detail allowing for macro-, meso- and microscopic 
formulations. It also includes explicit models of navigation. The basic underlying 
paradigm of the model appears to have a more general appeal and might prove useful also 
for multi-agents models of vehicular traffic flow. 
 
In a specific example, it is demonstrated that the choice of the parameters can be used in 
order to obtain different characteristics of the trade-off between short paths and avoiding 
dense crowds. In particular, the parameter sets in order to optimize various criteria such 
as egress times or average travel time are supplied. Hereby it was observed that the 
optimizing parameter sets are not unique. The illustrative examples also show that with a 
large number of agents (close to the capacity of the infrastructure) egress times are lower 
when the proposed route choice is used compared to the case where agents always adhere 
to the shortest path to exit the infrastructure. This is in contrast to the intuitive urge of 
evacuees to exit along the shortest routes. 
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