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Abstract—The optimization of traffic flow capacity utilization
in an intersection often relies on historical traffic flow demand.
Instead of relying on traffic demand, a novel model, called the
ideal flow model, aids in this optimization by making use of
traffic supply information. The model offers a unique approach
to analyzing intersection capacity since it utilizes the network
structure as well as the transition probability of a random walk
or using Markov chain, as an alternative to the information that
an OD matrix provides. In this paper, the ideal flow model is
used to analyze a crossing type intersection. It investigates the
steady state solution when the total flow is maximized and when
the design of an intersection is optimum. Three clusters emerged
from the simulations performed, and all three clusters depend on
the ratio of the total inflow capacity to the total outflow capacity.
The optimum design of the intersection is attained when the total
inflow capacity is the same as the total outflow capacity. In this
case, the total flow accommodated by the intersection reaches its
maximum value.'

I. INTRODUCTION

The rapid advancement of Intelligent Transportation Systems
has led to the improvement of the utilization of road networks
[1]. When determining the most efficient and reliable way
of distributing traffic density across road networks, the usual
method requires the expensive origin-destination (OD) survey.
The OD survey is a study on current traffic demand to predict
future traffic patterns [2]. A recent study [3] has proposed a
traffic prediction model based on “big data transportation”,
where deep learning is applied. In the preceding cases, traffic
assignment is done based on demand. Instead of looking at
traffic patterns from the view of demand, in this paper, traffic
flow modeling is seen from the perspective of supply. This
alternative traffic flow model is called the ideal flow model,
which aims to determine the most efficient utilization of a
network. This happens when the flow is distributed uniformly
over time and space. This idea is supported by [4] that proposed
a “dynamic route guidance system” based on the Maximum
Flow Theory which balances the traffic load on a road network.
The actual traffic flow can be managed in the direction of
the ideal traffic flow, which the ideal flow model provides.
Thus, the model can aid in the provision of intelligent traffic
information [5].

The approach of the ideal flow model is unique because
the travel demand is represented by the use of the transition
probability matrix of a random walk instead of the information
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from an OD matrix. In the micro level, if one views the
distribution of the travel demand flow to any direction from
an intersection as a probability distribution, aggregating these
flows will result in a transition probability matrix that is also
a stochastic matrix. The use of a stochastic matrix as an
alternative to using the OD matrix yields some interesting
properties, such as:
« scaling an ideal flow matrix by multiplying it by a positive
constant produces an equivalent ideal flow;
o an ideal flow matrix is a premagic matrix, because of flow
conservation on each node.

In this paper, the application of the ideal flow model is
demonstrated by analyzing traffic flow on the most common
type of intersection: a simple crossing type. The analysis will
be done on a macroscopic level and at a steady state condition.
Since the interest is on the long term effect rather than on the
dynamic effect, the detailed short-term interaction is irrelevant
and is not modeled. Moreover, traffic signals, stop signs and
yield signs produce flow that is a proportion of the flow arriving
at an intersection. In the long-term point of view, whether traffic
signals, stop signs or yield signs are used in a crossing type
intersection or not, the flow produced will still be similar, since
each cycle loses a small amount of time due to the acceleration
and deceleration of vehicles.

The capacity of intersections are designed based on the
demand of the traffic flow. If the predicted traffic demand is
high, roads are designed to have the greatest capacity possible,
subject to certain constraints. In this study, the thinking is
reversed. If the capacity of each road link is known, the
probability distribution of each link in the intersection can
be estimated. The probability distribution can then be turned
into a relative traffic flow in steady state condition, which are
called ideal flows. Traffic flow is modeled as a function of the
proportional capacity of inflow and outflow. Thus, this study
aims to answer the following questions:

1) What criteria are necessary so that a crossing type
intersection will accommodate the maximum total flow?

2) What is the behavior of the flow in a crossing type
intersection with respect to the total inflow capacity and
the total outflow capacity?

3) How does the change in the total flow in a crossing type
intersection affects network performance indices such as
speed, travel time and delay?

The rest of the paper is organized as follows. Section II



contains a literature review on some articles on how they dealt
with intersection capacity analysis. Section III gives the reader
an overview of the ideal flow model, so that readers will be
familiar with the terms used in this paper. This section contains
a discussion of the ideal flow model framework and how it
is applied to traffic assignment. Section IV discusses how
the model is applied to a crossing type intersection, and the
simulation methodology. Results are discussed and conclusions
are drawn in sections V and VI respectively.

II. REVIEW OF RELATED LITERATURE

The ideal flow model used both simulation and analytical
methods to gain information on the flow capacity of a crossing
intersection, aiming also to determine the ideal performance
of a road network. Moreover, computing the ideal flow matrix
requires the computation of link capacity proportions which
are derived from link probabilities.

Similar research on the simulated traffic on unsignalized
intersections to get data about its capacity, such as traffic
intensity and average waiting time has been done by [6]. Their
research compared their simulation results with results from
analytical methods based on technical regulations in the Czech
Republic. Another research [7] concluded that the performance
of pre-timed signalized intersections affects the performance of
the whole road network while [8] used “uncertainty analysis” or
a probabilistic method in filling in input values when analyzing
the capacity of signalized intersections.

III. OVERVIEW OF THE IDEAL FLOW MODEL

The ideal flow model is based on a random walk of multi-
agents in a directed network graph [9] that is uniformly
distributed in a steady state condition. A network is most
efficiently utilized when flow is uniformly distributed on it
over time and space. When the ideal flow model is based on
a uniform probability distribution, the ideal flow network has
the characteristic of having equal outflow from each node, and
that the network entropy is maximized [10]. This model aims
to determine the ideal distribution of traffic flow in a network,
and this phenomenon happens when the flow is distributed
uniformly over time and space.

The probability distribution of the links in a given network
graph can be derived from the link probabilities computed
as link capacity proportions. If this is the case, the model is
still applicable since it can be generalized for any probability
distribution using the concept of Markov chains. In a Markov
chain, in a very long random walk, the probability that an agent
ends at some vertex in a network graph is independent of the
agent’s starting point [11]. One of the assumptions, therefore,
in this model is that the network graph must necessarily be
strongly connected [12]. This implies that the resulting ideal
flow matrix is irreducible.

The ideal flow network is obtained from the stationary
distribution of a simple irreducible stochastic matrix. An
absolute ideal flow can be obtained through the scaling property
of ideal flow matrices. Since an ideal flow is a relative flow,

multiplying an ideal flow matrix F by a positive scalar &
produces an equivalent ideal flow matrix; that is,

F=xkF, k>0 (1)

The framework for the ideal flow model is as follows:

Fig. 1. Ideal Flow Framework for Traffic Assignment in Matrix Form

Suppose a network structure is given with adjacency matrix
A = [a;5]. A link distance matrix L = [/;;], a link capacity
matrix C = [¢;;], and a link maximum speed matrix U = [u;;]
can be constructed using the same matrix structure as A. If
the matrices are converted such that they will contain only
binary elements, the matrices are equal. All the matrices in the
framework use the same matrix structure.

The stochastic transition matrix
cf; eBeii

Oi Beij
j=1C;;e"™M

S = [s45] = @)
is formulated based on the general proportional capacity and
is similar in form to the model of generalized cost [13].

It is possible to set the values of the power sensitivity
parameter « and the exponential sensitivity parameter /3 for
each node; however, it is advisable to use a single value for
« and a single value for 3 to be used for the entire network.
High values assigned to « and to 3 tend to make the higher
capacity leg of an intersection have higher probability values.
When o« = 1 and 5 = 0.00001 (small positive numbers), (2)
simplifies to (3). The latter, (3), is called proportional capacity.

Cij
S = [s45] = P% 3)
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The computation of the ideal flow matrix is based on
properties of Markov chains, by initially computing for the
node probability distribution 7 = [r;]. This node probability

distribution is obtained by solving

(ST —Dmw=0 4)

subject to the constraints
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where I is the identity matrix and iT=1 1 . The proof
of the convergence and uniqueness of an irreducible stochastic
matrix can be found in [14].

The node probability vector 7 can be solved using singular
value decomposition [15]. The solution is obtained using (21).
The symbol \ is a MATLAB notation.

sT-1 ., 0
="\ 5)
The ideal flow matrix F = f] ... f 7 Tis
calculated from
tf =msl  fori=1,...,n (6)

Since the stationary distribution 7r is unique [16], the ideal
flow matrix, where each row vector is a scalar multiple of the
stationary distribution and a row vector of a stochastic transition
matrix, is unique for each stochastic transition matrix.

When the ideal flow matrix is obtained, the flow/capacity
ratio matrix

C..
o - B #0
W= w; = . (7
0, otherwise

can be derived.

A maximum allowable flow/capacity ratio £ has to be set for
the entire network. The value of £ depends on the model used
when computing for the travel time from the flow/capacity ratio:
whether it is based on Greenshields’ model [17] or the BPR
[18] cost function. In most practical cases, the value should
be in the range of 0.9 < £ < 1.0.

When the value of ¢ is set, the scaling factor  can be found

using
§

max wy;

K= ®)
To anchor the ideal flow matrix from the relative flow into

the absolute flow, the scaling property can be applied. The

absolute flow matrix F is computed using the equation

)

The new ideal flow matrix is the absolute link flow in the
network with the same unit as the capacity. For example, if
the capacity is in vehicles per hour, then the absolute link flow
is also in vehicles per hour.

Since the final flow/capacity ratio W = [w;;] , link distance
matrix L = [l;;], and maximum speed on each link U =
[ui;], the link speed for each link can be computed using
Greenshields’ [17] model and create a link speed matrix V'
where P

fij = le‘jcij if Cij 75 0

V= [Uij] = %(14— 1—wij) (10)
Clearly, the value of the flow/capacity ratio cannot go beyond
one to make the elements of V' real numbers.
The travel time matrix, therefore, is )
i
2l j

T=[tyl= wary/on

(1)

and the minimum travel time, which happens at free flow
condition, is )
hz i

0 ij

To = [tij] =

(12)
The delay is the difference between the actual travel time (due
to traffic flow) and the minimum travel time. The delay matrix
D is as follows:

h i
2ljj lij

Uij (1+m) Uij

D = [6;5] = (13)
The alternate travel time model as derived from BPR [18] is

T = [ti;] = [t3;(1 +7(wi;)")] (14)
IV. METHODOLOGY

A. Intersection Model

The typical crossing intersection network is shown in Fig.
2.

Fig. 2. Core Design of Crossing Intersection

The corresponding link capacity matrix for Fig. 2 is

2 @ b c d e 3
a 0 e 0 0 O
b C1 0 Ce C7 Cg
C=c 0 c3 0 0 O
d 0 cg 0 0 O
e 0 s 0 0 O

Applying the ideal flow model requires that the graph generated
must be strongly connected. To ensure this, a dummy cloud
vertex and a dummy cloud edge must be introduced to the
current network. The dummy edges are extensions of the links
they represent. This means that the capacity of each dummy
edge will be equal to the capacity of the edge it follows. For
instance, the capacity of dummy link za is the same as the
that of link ab. Similarly, the capacity of dummy link cz is
the same as that of link bc. See Fig. 3.



The corresponding link capacity matrix for Fig. 3, which is
irreducible, is

a c; 0 0 0
b c1 0 ¢ ¢7 cg O
Cc— c 0 ec3 0 0 0 cp
d 0 Cq 0 0 0 C7
€ 0 Cs 0 0 0 Cg
z c2 0 c3 ¢4 ¢c5 O

Note that the original network is still the core network. The

Fig. 3. Strongly Connected Design of Crossing Intersection

flow performance indices will be acquired using the values
from the core network only, without dummy links nor the cloud
node.

Let ¢yt and c¢;y, be defined as the total outflow capacity and
total inflow capacity respectively, where ¢, = c1+cg+c7+cs
and ¢;, = c2 + c3 + ¢4 + cs5. Using the configuration of the
crossing intersection in Fig. 2, the stochastic matrix S is

2 . . 3
2 1
0 c1tca 0 0 0 ci1+c2
c1 0 C6 Cr (& 0
Cout c Cout Cout Cout c
3 6
S j— C3+C6 0 O 0 C3+C6
- Cq (4
0 3 0 0 U o
Cs Ccg
O cs+cg 0 0 cs+cg
C2 €3 L4 C5
Cin 0 Cin Cin Cin 0

The node probability distribution vector 7t can be normalized
such that one of the entries is 1 (refer to (15)), since its values
are relative. In other words, multiplying by a positive scalar
produces an equivalent node probability distribution vector that
spans the same hyperplane.

T 1

T = W Tp T3 W4 T5 (15)

The elements of the node probability distribution are listed

below. For simplicity, the

values are written in terms of .

c1 C2
_ Cout Cin
™= c1_ca—ci
Cout c1+C2
C1 C2
= Tp—— + —
Cout Cin
€2—C1 C2
T 1+ ci1+c2 Cin
2 = 1 _ C2—cC1 _C1
ci1+c2 Cout
C2—C1
=14m
c1+ co
Ce C3
T3 = To—— + —
Cout Cin
Cc7 Ca
T4 =— TTp——— —
Cout Cin
Cs Cs
g — MTp——— —
Cout Cin
The ideaé flow matrix is
mTic2 mTic1
0 c1+ca 0 0 0 c1+co
m2cy 0 T2Ce macy T2C8 0
Cout Tac Cout Cout Cout Tnc
_n3c3 _T3C6
p_8 0 ZE 0 0 0 gy
— T4Cq T4Ct
0 catcr 0 0 0 ca+cr
T5Cs5 T5C8
2 £3 L4 £5
Cin Cin Cin Cin

An interesting property can be observed from ideal flow

matrices. An ideal flow matrix is said to be premagic. A
premagic matrix is a square nonnegative matrix where the sum
of rows is the same as the sum of columns. In matrix F, the
sum of rows is equal to 7 and the sum of columns is equal to

P

The flow/capacity matrix W can be derived by dividing the
nonzero elements of F by the corresponding elements of C.

T 1
0 oo 0 0 0 P
2 T2 2 2
Cout 7'r Cout Cout Cout 7r
3 3
W = 0 c3+cg 0 0 0 c3+cg
/a0 T 0 0 0 T4
catcr cater
0 5 0 0 0 5
cstce cs+c
P S T
Cin Cin Cin Cin

Note that, similar to F, the elements of W are relative values.
When the elements of W are multiplied by a positive scalar,

an equivalent flow/capacity matrix is obtained.

When the flow/capacity matrix has been obtained, perfor-
mance indices of the network flow, such as speed, travel time
and delay follows from (10), (11), and (13) respectively.

B. Simulation Method for Analysis

The Monte Carlo simulation was implemented on a random
sample of 10,000 crossing intersections. The following are the
assumptions for the simulation environment:

o The number of lanes is random, ranges from 1 to 10, and
is not always an integer, since it is possible to have a

fraction of a lane (e.g. half a lane).



o The capacity per lane is set at 2000 vehicles/hour per
lane.

o The length of each link is 500 meters.

e The maximum speed is set at 60 km/hour for each link.

o The maximum allowable flow/capacity ratio is set at 0.99.

o Greenshields’ cost function is applied.

The capacity ratio index is defined as

Cin

)\:

(16)
Cout
This number measures the relationship of the total inflow
capacities and total outflow capacities with the total flow.
The values of A are then plotted against the flow/capacity
ratios, the total flow, and some network performance indices
such as speed, travel time and delay.

V. RESULTS AND DISCUSSION

Figure 4 shows the relationship between the values of A and
the flow/capacity ratios. There is an apparent boundary line in

Fig. 4. Relationship between A and the flow/capacity ratio

this figure, and it occurs when A = 1. This separates the data
set into two: (i) when 0 < A < 1 and (ii) when A > 1. Notice
the difference in colors of the two sets. These are generated as
results of k-means clustering. In the execution of the k-means
clustering method, total input lanes and total output lanes are
used as features, which correctly defines the grouping seen in
Fig. 4.

The green curve is a model estimate of the data set. The
estimated power regression line is of the form

w =\’ (17)

The second data set parameters are @ = 0.94324 and 6 =
—0.35674.

Fig. 5 shows the relationship between A\ and the total flow.
Notice that the peak of the total flow occurs when \ = 1.

Fig. 5. Relationship between A and total flow

When the same flow/capacity ratio (equation (17)) is applied
to equations (10),(11), and (13), the following equations are
obtained:

h i
V= %(1+p1—g02\_9) (18)
h o i
= hu(l+1/1—<p)\* ) , (19)
_a LI
ESY e e T (20)

The graphs of the preceding equations are displayed as green
lines in Fig. 6, Fig. 7, and Fig. 8 respectively.

Fig. 6. Relationship between A and average link speed

Observe that each of the graphs in Fig. 4, Fig. 5, Fig. 6, Fig.
7, Fig. 8 is divided into three clusters: (i) when 0 < A < 1,
(i) when A > 1, and (iii) when A = 1. In (i), the total inflow
capacity is less than the total outflow capacity. In this cluster,
an increase in A also increases the flow (either the total flow



Fig. 7. Relationship between A and average travel time

Fig. 8. Relationship between A and average link delay

or the maximum flow). This means, the greater the value of A,
the better the flow performance.

In (ii), where the total inflow capacity is greater than the
total outflow capacity, an increase in A decreases the flow that
can be accommodated by the intersection (even if the number
of lanes for each leg is increased). In other words, the greater
the value of A, the worse the flow performance.

In (iii), a special case, where the total inflow capacity is
equal to the total outflow capacity, the total flow that can be

accommodated by the intersection reaches its maximum value.

This is the optimum design of the intersection. In this scenario,

the ideal flow matrix becomes equivalent to the capacity matrix.

Thus, the flow/capacity ratio reaches the maximum value for

each link, which means that the flow performance is maximized.

This is shown in the following:

A=1-3F=kC—W=¢if wy; #0

Note that, for all clusters, when the value of the total flow
changes, the values of the performance indices are affected.
For example, when the total flow increases, the value of speed
decreases and the values of travel time and delay increase.
Specifically, when the total flow reaches its maximum value,
speed will attain its minimum value while travel time and delay
will reach their respective maximum values.

VI. CONCLUSION

The ideal traffic flow can be used as guide to analyze
intersection capacity based on steady state condition.

The results of the Monte Carlo simulation produced three
clusters of behaviors. These clusters depend on the value of A,
which is defined as the ratio of the total inflow capacity to the
total outflow capacity. In the first cluster, where 0 < A < 1,
the behavior of the flow of the crossing type intersection is
almost linear. Total flow, travel time and delay increases, and
speed decreases, almost linearly when A increases.

In the second cluster, where A > 1, the total flow, travel time,
and delay decreases to an asymptotic value when A increases.
Speed, meanwhile, decreases asymptotically to a value, when
A increases.

The third cluster is the special case, when A = 1. Based
on the ideal flow analysis, the optimum design of crossing
intersection capacity happens when the total inflow capacity
is equal to the outflow capacity. At that point, the total flow
that can be accommodated by an intersection will reach its
maximum value.
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VII. APPENDIX: NUMERICAL EXAMPLE

Suppose a crossing intersection is given, where the link edge
weights correspond to the number of lanes. To make the graph
strongly connected, a cloud node and dummy links are added
as in Fig. 9. Each lane has a capacity of 2000 vehicles/hour
per lane. For simplicity, set the base maximum speed (i.e. the
speed at free flow) of each link to 30 km/hour for the first lane.
For each increase in the number of lanes, the base maximum
speed will be increased by 10 km/hr. Also, let each link have a
length of 500 meters. Based on the given network specification,

Fig. 9. Strongly Connected Intersection Design of Numerical Example

the following are the link capacity matrix C, the link maximum

speed matrix U and the link distance matrix L:

a b c d e
a T0O 2 0 0 O
b 2 01 2 4
C=c¢ 0 3 0 0 0
d 03 0 0 0
e L0 2 0 0 O
a b c d e
a [ 0O 4 0 0 O
b 40 0 30 40 60
U=c¢ 0 50 0 0 O
d 0 50 0 0 O
e L 0O 40 0 0 o0
a b [ d e
a [ 0 05 0 0 0
b 05 0 05 05 0.5
L=c¢ 0 05 0 0 0
d 0 05 0 0 0
e L 0O 05 0 0 0

The updated capacity matrix C is

N 0O TR

NOOONO D
ONWWOoON T
WO OO OO
WO OO NO a
NOOO OO0
OB NHONN

Use (3) to create the stochastic matrix S. When simulating with
a computer, it is preferred to use matrices in the computations.
Let C; denote the sum of the elements of row 7 in C. Let v =

C% C% C% Cin . Define G to be a diagonal
matrix with diagonal entries equal to the values from v, i.e.,
G = diag(v). With G, the stochastic matrix can be obtained

by using the equation S = GC. In this example,

2 L .3
oL o o o 1
2 1 2 4
9 3 9 9 9 1
s—Q0 3 0 0 0 ¢
0 - 0 o0 o 2
o I o o o %
1 3 3 1
5 0 95 1 5 O

The node probability vector 7 can be solved using singular
value decomposition [15]. The solution is obtained using (21).
The symbol \ is a MATLAB notation.

s'-1 . 0
T= \ (21

it 1
The node probability distribution vector for this example is w =
£ 1033 5% 807 989 1. Applying (6), with the

greatest common divisor as the scaling factor gives the simple
form of the ideal flow matrix. Observe that F' is premagic.

a b c d e z by
a 0 626 0 0 0 626 1252
b 686 0 343 686 1372 0 3087
c 0 894 0 0 0 298 1192
F= d 0 921 0 0 0 614 1535
e 0 646 0 0 0 1292 1938
z 566 0 849 849 566 0 2830
> 1252 3087 1192 1535 1938 2830 11834

Set the maximum allowable flow/capacity ratio to & = 0.99 to
get the scaling factor . With this, the ideal flow can be bound
with the actual capacity in vehicles/hour to obtain the absolute
steady flow matrix. The absolute steady flow matrix F can be
obtained using (9). The capacity is converted to flow capacity



by multiplying the number of lanes with 2000 vehicles/hour
per lane.

a b c d e z b

a 0 3614 0 0 0 3614 7727

b 3960 0 1980 3960 7920 0 17820

c 0 5161 0 0 0 1720 6881
F= d 0 5317 0 0 0 3544 8861

e 0 3729 0 0 0 7458 11187

z L3267 0 4901 4901 3267 0 16336

> 7727 17820 6881 8861 11187 16336 68313

The flow/capacity ratio matrix, based on (7), is
0 0.90 0 0 0 0.90
0.99 0 0.99 0.99 0.99 0
W — 0 0.86 0 0 0 0.86
- 0 0.89 0 0 0 0.89
0 0.93 0 0 0 0.93
0.82 0 0.82 0.82 0.82 0

Based on the flow/capacity ratio, the average link speed matrix
(in km/hour), average link travel time matrix (in minutes), and

average link delay matrix (in seconds) can be obtained using
(10), (11), zgld (13) respectively.

0 26.22 0 0 0 26.223
22 0 16.5 22 33 0
V— 0 34.35 0 0 0 20.61
- 0 33.44 0 0 0 26.75
0 25.20 0 0 0 37.81
28.56 0 35.7 35.7 28.56 0
1.14 0 0 0 1.14

0 1.82 1.36 0091 0
0.87 0 0 0 1.462

=
Il
MOOOY) N POOO) N o) 0) 0))
oooogo

0.90 0 0 0 1.12
1.19 0 0 0 0.79
1.05 0 0.84 0.84 1.05 0
0 23.66 0 0 0 23.66
36.82 0 49.09 36.82  24.55 0
D= 0 16.40 0 0 0 27.34
- 0 17.83 0 0 0 22.29
0 26.41 0 0 0 17.61
18.03 0 14.42 14.42 18.03 0

The average speed is 26.59 km/hour, the average travel time
is 1.19 minutes, and the average delay is 28.95 seconds. Note
that the flow performance indices are obtained only from the
core network, without the dummy links nor the cloud node.



