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Abstract 

 

A standard evacuation map posted in a room shows the location of the current room and 

the path to the nearest exit. If the number of occupants in the building is only small, then 

the shortest paths to the exits may enable all the occupants to evacuate in minimum possible 

time. Previous studies have shown, however, that the shortest path configuration does not 

lead to minimum egress time for large crowds in public facilities such as those in a school, 

theater or gym. 

 

We extend the previous studies by determining the minimum egress time for different 

crowd sizes on a fixed network graph. We apply optimization search on a mesoscopic 

multi-agent pedestrian simulation that employs the concept of Route Choice Self 

Organization (RCSO).  We show that the egress time gap between the shortest path 

configuration and RCSO configuration increases very quickly with respect to crowd size. 

Thus, for crowded pedestrian facilities, there may be a need to revise the standard 

evacuation map so that evacuation behavior that approximates the RCSO becomes 

possible, and this can lead to a much better egress time. 
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1. Introduction 

 

There are many standards required by government for pedestrian facilities. These standards 

are enforced to safeguard the lives of the people inside such facilities. One important 

standard is on the facility’s egress time, defined as the amount of time needed to evacuate 

everyone [Tubbs and Meacham, 2007]. 

 

To lower the egress time, evacuation maps are normally posted in rooms and other selected 

areas. Each of these maps shows the location of the current area and the path to the nearest 

exit. The purpose of these maps is to make people aware of where they should go in case 

of evacuation so that when the evacuation is needed, they would not spend unnecessary 

time searching for a way out. 

 

The premise of using the shortest path is that the shorter the distance to be traveled, the less 

time is needed to cover that distance. However, this fails to consider the fundamental 

density-flow relationship, which establishes that if more people are on the same path (such 

as the case when everyone uses the shortest path) then the increased density actually results 

to decreased speed, and consequently higher egress time. 
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Therefore, if the number of occupants in a building is only small, then the shortest paths to 

the exits may enable all the occupants to evacuate in minimum possible time. However, as 

shown in previous studies [e.g., Teknomo 2008, Schneider and Könnecke 2010], the 

shortest path configuration does not lead to minimum egress time for large crowds. This is 

not difficult to imagine, since the decrease in speed brought by congestion offsets the 

advantage of short distance towards the egress point. In any case, the evacuation of large 

crowds in a public facility such as a school, theater or gym requires special consideration. 

 

We extend the previous studies by determining the minimum egress time for different 

crowd sizes. We apply optimization search on a mesoscopic multi-agent pedestrian 

simulation on a fixed network graph that employs the concept of Route Choice Self 

Organization (RCSO).  We show that the egress time gap between the shortest path 

configuration and RCSO configuration increases very quickly with respect to crowd size. 

Thus, for crowded pedestrian facilities, there may be a need to revise the standard 

evacuation map so that an evacuation behavior that approximates the RCSO becomes 

possible. Doing this may consequently lead to a much better egress time. 

 

This paper is organized as follows. Sections 2 and 3 cover preliminary discussions about 

the mesoscopic multi-agent pedestrian simulation and the Route Choice Self-Organization, 

including related literature about these. Section 4 discusses the methodology used in the 

study.  This is followed by a presentation and analysis of the derived results in Section 5. 

Finally, Section 6 summarizes the main contributions of this paper and proposes some 

improvements that can lower egress times. 

 

 

2. Mesoscopic Multi-Agent Simulation 

 

Pedestrian movement can be modeled in the microscopic, macroscopic and mesoscopic 

levels. A microscopic pedestrian simulation treats each pedestrian as an individual agent 

that moves about a virtual environment. Each agent is capable of independent action, 

including pursuit of specific goals and interaction with other agents. This model involves 

computation-intensive processes and is able to produce very detailed information about the 

pedestrian flow in some virtual environment. The studies of [Blue and Adler 2000, Helbing 

and Molnár 1995, Hoogendoorn and  Bovy 2004, Kretz and Schreckenberg 2006, 

Schadschneider 2001, to name a few of them] use this type of model. 

 

On the other extreme, macroscopic pedestrian simulations model the environment using 

simpler details, and aggregate the pedestrian into groups that follow the fundamental flow-

density relations. These models perform fewer computations than microscopic simulation 

models and are able to produce aggregate information only about the pedestrian system 

being modeled. Such modeling is the approach used for example by [Henderson 1974, 

Kachroo and Ozbay 1999 and Lovas 1994]. 

 

Our study uses a model strategy that is between the 2 extremes described earlier. Called 

mesoscopic pedestrian simulation, our model involves aggregating environment 

information into a network graph, while still treating each pedestrian as an individual agent 
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in the system. The result is a model with fewer computations than in microscopic models, 

but with more detailed results than in macroscopic models. Mesoscopic models have been 

used for studying pedestrian behavior in several papers also [Teknomo and Millonig 2007, 

Teknomo, Bauer and Matyus 2008]. Slightly more aggregated and different mesoscopic 

models are also used in other studies [Tolujew and Alcalá 2004, Florian et al, 2001]. 

 

In our mesoscopic model, a pedestrian environment is represented by a graph G = (V, E) 

where V is the set of nodes, each representing a critical area of the environment (e.g. door, 

start or end point of a stair, elevator, escalator, ramp etc.) and E is the set of edges, each 

representing direct paths from one node to another. Figure 1 illustrates a sample room 

layout with the corresponding network graph structure. 

 

 

 

 

Figure 1. A sample floor layout, and the corresponding network graph. 

 

A source node in the network graph represents an area where the pedestrians are coming 

from. The two blue nodes on the left of the network graph in Fig. 1 are source nodes. A 

sink node (e.g., the brown colored nodes on the right most in Fig. 1) corresponds to a target 

egress point such as an exit door. 

 

Each edge in the graph is assigned an equivalent length and an equivalent width, effectively 

limiting the maximum number of pedestrians that can simultaneously occupy the space 

represented by the edge. In this paper this limit is called the space capacity of the given 

edge. For a given edge with length l, width w and maximum density max, the space capacity 

c is given by the following equation 

 

c = l wmax        (1) 

 

A node, on the other hand, is not associated with a capacity value. Since a door is such a 

crucial element of pedestrian evacuation, which should have an associated capacity, it is 

modeled by an edge connecting 2 nodes that represent the opposite sides of a door (See 

Fig. 1). Other crucial elements of the environment, such as stairs, are represented similarly. 

 

In our pedestrian simulation, an agent moves from a source node to a sink node through a 

valid path in the network graph. The actual path that is selected by an agent, among possibly 

many path options, is based on the rules described in the next section. By using a network 

graph instead of a virtual environment, some details are aggregated. This results to a 

simplified model where there are fewer computations to make. 

 

 

3. Route Choice Self-Organization 
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where  and c are the pedestrian volume and space capacity, respectively, of the 

given edge, while 1 and 1 are parameters to the Beta Cumulative Distribution 

Function. The Beta function has been selected because the graph of its cumulative 

distribution is flexible enough to handle different varieties of expected volume 

interaction relationship. For example, when 1 = 1 = 1, then the graph of the 

function is simply linear. 

 

Navigation: The range of values for this also comes from the interval [0, 1]. If the 

attraction component measures the attractiveness of an edge, the navigation 

component measures the attractiveness of a node at the other end of the edge. 

 

First, every node v is assigned a value indicating a measure of some utility distance. 

We have called such assignment as Sink Propagation Value (SPV) since the values 

normally emanate from the sink nodes. Correspondingly, the assignment function 

is SPV(v). One possible assignment function is the measure of actual distance of a 

node from a nearest sink. In this case, SPV(v) = 0 if v is a sink node, or SPV(v) > 0 

otherwise. Figure 2 illustrates a simple SPV computation for a given network where 

the edge weights have been pre-assigned. 

 

 

 

 

 

 

 

Figure 2. SPV computation may be based on shortest distance from a node to a 

nearest sink. 

 

The navigation value Ni,j from node vi to an adjacent node vj is a normalized value 

that also uses the Beta function, as described below. 
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Here, (vi) is the set of nodes adjacent to vi and having lower SPV than vi, i.e., 

nearer to some sink. The parameters 2 and 2 are used for the Beta distribution 

function. Note that for static environment such as those where the doors do not open 
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and close during the simulation, the navigation values need only to be computed at 

the start of the simulation. This is because the computed SPV for each node is not 

changed during any part of the simulation. 

 

The movement of the agents in the network graph is modeled using discrete time steps by 

specifying behavioral update rules at given events. The main types of events are as follows: 

 

1. Agent insertion: An agent is inserted into the simulation at a specific time and at 

a specific source node. For this study, all agents are inserted at the (same) source 

node at the start of the simulation. 

 

2. Movement from node to edge: When an agent is on a node, it must decide which 

incident edge to take.  Let vi be the current node of the agent at time t and let vi be 

an adjacent node from (vi). The specific edge e = (vi, vj) that is selected is the one 

that maximizes 

 

, , ,
( )

arg max
i

e e t e t i j
j v

k P I N


          (4) 

 

Note that although the permission value Pe,t and the navigation value Ni,j are static, 

the interaction value Ie,t is dynamic, and is dependent on the current situation in the 

network. 

 

3. Movement within edge: Once an agent enters an edge, its speed is computed based 

on the number of agents ahead and on the same edge, using the fundamental 

density-flow relationship. 

 

,

max 3 31 BetaCDF ; ,
e t

e

speed speed
c


 

  
     

  

    (5) 

 

where speedmax is fixed at 1.2 m/s for all pedestrians. 

 

The agent is assumed to move at this computed speed throughout its stay in the 

edge. Since the length of the edge is known, then the time that the agent exits the 

edge and arrives at the next node can be easily determined. The parameters 3 and 

3 are used to adjust the cumulative Beta distribution function to control the speed-

density relationship. The speed-density follows the Greenshield’s (1934) linear 

model when 3 = 3 = 1. Knowing the speed-density function, the computation of 

the density-flow relationship is a straightforward application of the fundamental 

traffic flow formula. 

 

4. Termination: An agent is removed from the system once it reaches a sink node. 

As such, its corresponding pedestrian is considered evacuated from the facility. 
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The algorithm for the RCSO model that we use in this study is summarized in Fig. 3. The 

main output is an NTXY table, which indicates the XY position (in this case, which specific 

node or edge) of an agent with id N at a given time T. 

 

 

Algorithm: RCSO 

Input: Network Graph G=(V, E), and a set of OD pairs for the agent population 

Output: NTXY Table 

 

Pre-compute the navigational values Ni,j 

Clear the NTXY Table 

Insert the agents to the network 

 

For each time step 

    If there is no more agent in the network Then 

        return NTXY table 

 

    For each agent A still in the network 

        update A’s position 

        record entry to NTXY table 

 

 

Figure 3. Overview of the RCSO algorithm. 

 

 

 

4. Methodology 

 

The RCSO model produces a load-balancing effect on a given network.  As such, it can be 

viewed as approximating the minimum possible egress time for a facility. To give us a 

better understanding of the dynamics of the (approximate) minimum egress time, the 

numerical experiments for this study were divided into 2 parts, as shown in the figure 4 

below 
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Figure 4. Design experiment. 

 

The first set of experiments simulates the minimum egress time using RCSO. However, 

since the performance of the RCSO depends on the parameter values, we estimate the 

values that give the minimum egress time using Simultaneous Perturbation Stochastic 

Approximation (SPSA by Spall, 1998) integrated with Tabu list (Glover, 1989). The set of 

parameter values that produces the minimum egress time defined what we call the 

Minimum Egress RCSO, in order to differentiate it from normal RCSO, which uses the 

parameter values 1 = 1 =2 = 2 = 3 = 3 = 1. The last two parameter values yield a linear 

relationship for the fundamental diagrams of traffic flow (in term of relationship between 

space mean speed and density). 

 

The SPSA executed the simulation several times and terminated only when there was no 

improvement in the results after 500 iterations. For a fixed (relatively simple) network 

graph and an OD pair set, one simulation may require several seconds to several minutes 

of run-time. Thus an SPSA optimization search for the same input could run from a few 

hours to many days. 

 

To derive results within reasonable time, we have decided to use a very simple and yet 

interesting network graph in this study. The graph contains only 2 nodes (one source and 

the other sink) connected using 2 edges so as to give pedestrians the chance to select a path 

(see Fig. 5). 

 

 

 
Figure 5. Basic network graph used in the experiments, and a possible corresponding 

floor layout. 
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After setting up the network graph structure, the lengths and widths of each of the edges, 

and also the total number of agents in the system were varied in order to determine the 

relationships among these. The many combinations of variable values also enabled better 

analysis of the 3 configurations being compared. 

 

The aim in the first set of experiments is to elucidate the relationship of the independent 

variables to the egress time. To help in this cause, the NTXY table (produced by the 

simulation with minimum egress time, as returned by the SPSA optimization search) was 

used to generate the path-usage statistics. The various graphs for the experiments are shown 

in the section on results. 

 

For the second set of experiments, the results of the previous set of experiments were used 

to compare with the results of simulations involving normal RCSO and the shortest path 

configuration. The aim of this part of the study is to validate the hypothesis that as the 

number of pedestrians in a facility increases, the gap between the egress time of the shortest 

path configuration and the RCSO configuration increases at a very fast rate. 

 

 

5. Results and Analysis 

 

As mentioned in the previous section, the study is divided into 2 parts. The first part 

searches for the set of values (for the 6 parameters of the RCSO model) that minimizes the 

egress time. The second part then compares the egress time of the following configuration 

models: 

1. Minimum Egress RCSO 

2. Normal RCSO 

3. Minimum Distance Configuration 

 

5.1 The Minimum Egress RCSO 

 

After determining the minimum egress RCSO by running the RCSO algorithm on the 

network graph and then searching for the parameter values that minimize the egress time, 

the path usage statistic was also collected for each of the various combinations of values 

for the length, width and number of agents. In particular, these statistics were collected by 

first fixing the values of L1 and L2 (the lengths of the 2 edges) as well as the widths W1 and 

W2 in order to define the exact space capacities (C1 = L1W1 and C2 = L2W2) of the edges, 

and then observing how the ratio of the path usage between the 2 edges varies with 

increasing number of agents. Graphing the results on these path usage ratios reveals 4 

different patterns emerging. These 4 general patterns are shown in Fig. 6. 

 

In these graphs, the x-axis is for the number of agents while the y-axis captures the ratio of 

the path usage. The blue and red plots correspond to the path usage ratios of the 2 edges. 

Since there are only 2 edges in the network, the plots exhibit symmetry with respect to the 

line y = 0.5 (the mean ratio). 
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Pattern 1: One line 

 

The first pattern revealed involves a straight line. Interestingly, this pattern emerges if and 

only if the dimensions of the 2 edges are exactly equal (i.e., L1 = L2 and W1 = W2). 

Technically, the pattern is not really a straight line, especially on the left part of the plot 

where there seems to be a large variation.  This is actually due to the sensitivity brought 

about by the small number of agents.  For example, if there are only 3 agents, then the best 

assignment would one edge having 2/3 path usage ratio while the other having only 1/3. 

 

In general, if the number n of agents is even, then each of the edges will have exactly n/2 

agents passing through it, to yield a usage ratio of 0.5 for both edges. However, if n is odd, 

then there will be exactly (n+1)/2 and (n-1)/2 agents passing through the first and second 

edges respectively. These yield ratios of (n+1)/(2n) and (n-1)/(2n) which approximate 0.5 

when n is sufficiently large. Thus, the plot of the path usage ratio approximates that of a 

line on the mean ratio. 

 

The first pattern strongly demonstrates the load-balancing phenomenon observed in RCSO 

models. Whenever the 2 edges have equal lengths and equal widths, then even if the 

number of agents increases, the ratio is still (approximately) 0.5 for each of the edges. Note 

that the actual optimal configuration for this type of network graph has the same ratio 

values! 

 

Pattern 2: One line with interlinked branches 

 

Here is where it becomes more interesting. There were plots where the 2 edges have the 

same ratios of 0.5, until the number of agents reaches a certain threshold.  After the 

threshold, the path usage ratio for one edge starts to increase, while that for the other edge 

starts to decrease with increasing agent numbers. Two questions come to mind: 

 

(1) What is the explanation for this behavior in the plot? 

(2) Can the threshold value be predicted? 

 

The behavior where the 2 edges have the same ratios corresponds to the “filling-up” period.  

Each of the 2 edges during this period can still accommodate more agents, and thus receive 

agents at approximately the same rate. At the threshold point, the two edges are filled up 

completely, and then afterwards one edge starts to release agents at the other end already. 

 

The 2 edges are filled up (almost) simultaneously even though they have different lengths 

and widths because their space capacities (length x width) are the same. This concept also 

helps answer the second question. To determine the threshold point, we only need to 

compute the maximum total number of agents occupying the 2 edges. Since the length and 

width values in the experiments are in linear units, then multiplying this with the maximum 

density for a space will provide the threshold value. The actual formula for the threshold 

is therefore given by equation 

 

 1 1 2 2 maxthreshold L W L W          (6) 
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where L is the length, W is the width, and 
max  is the maximum density. 

 

In our numerical experiments, we use meters for the length and widths of the edges. Our 

model also assumes that the maximum density is 4 persons per square meter. The computed 

threshold in each configuration agrees with that found in each of the plots. To account for 

the divergence in the plots we give the following explanation. 

 

At the time when the threshold is reached, the 2 edges are completely filled up. The shorter 

edge, however, will start to release agents sooner than the other edge, thus becoming 

available again for accepting a few agents. Consequently, more agents pass through this 

edge than in the other. Until the longer edge starts to release agents, incoming agents will 

use the shorter one. This explains why the gap between the path usage ratios continues to 

increase immediately after the threshold point. 

 

At some point, the change in path usage ratio for the 2 edges is inverted. That is, the edge 

that was previously experiencing an increase in the path usage ratio will start to experience 

a decrease because of congestion, while the other edge starts to have an increase in the ratio 

(as a result of the congestion on the other edge). 

 

This next critical point actually corresponds to when the second edge starts to release some 

agents on the other end, and becomes available for incoming agents. These agents will 

therefore prefer this (unsaturated) edge over the other (saturated) one. 
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Figure 6. Four basic patterns observed from the plots of path usage ratios. 
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Numerically, this second critical point can be computed by deriving some pieces of 

information. 

1. First, the time tout it takes for the first agent in the longer edge to come out can be 

computed by tout = L2 / uinit where L2 is the length of the longer edge and uinit is the 

speed of the first agent that entered this edge. 

2. Next, the time it takes for each of the first k agents in the shorter age can be 

computed using a similar formula, i.e, tk = L1 / uk . Then we evaluate the maximum 

k such that tk < tout . This k value is the second critical point. 

 

Two other important aspects of the second pattern should be emphasized: 

 

1. For a single line to be observed on the left part of the plots, the 2 edges should have 

the same space capacity values. This ensures that both have equal attractiveness at 

the start. If the space capacities are not the same, then there will be 2 lines on the 

left part of the plot, as explained in the third pattern. 

 

2. After initially filling up the 2 edges, incoming agents will have to wait for agents 

coming out of one of the edges. For each edge, there will be no simultaneous exit 

(i.e., only maximum one agent exits at a given time). Consequently, each future 

incoming agent sees exactly c–1 agents in the edge, where c is the space capacity. 

Thus every such agent will have the same initial speed. Considering this fact on 

agents of both edges, the increase-decrease pattern in path usage ratios is 

guaranteed to be rhythmical. 

 

Pattern 3: Two Lines 

 

In the cases covered by this pattern, the plots are asymptotic to the 2 lines at ratios r1 and 

r2. Such cases occur only when the lengths of the edges are equal, while the widths are 

unequal. The explanation for this observation is given as follows. 

 

Let l1, l2, w1 and w2 be the lengths and the widths of the 2 edges, with l1= l2, and, without 

loss of generality, let w1 < w2. If we let k =w2/w1 be the ratio of the 2 widths, then it follows 

that the ratio of the space capacities of the 2 edges is also equal to k. That is, c2/c1 = k. 

 

To simplify the discussion, assume first that k is an integer. At the beginning, both (empty) 

edges are equally attractive, in terms of their interaction value Ie,t. The first edge gets the 

first agent, making it less attractive after. Succeeding k agents will select the second edge, 

after which the interaction values for the two edges would have equalized again. In other 

words, for every agent that goes to the first edge, k succeeding agents choose the second 

edge. This leads to the following values for r1 and r2. 

 

1 2

1
,

1 1

k
r r

k k
 

 
      (7) 
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Writing these in terms of the space capacities, then since c2/c1 = k, we have the following 

results. 

1 2
1 2

1 2 1 2

,
c c

r r
c c c c

 
 

     (8) 

 

In the case that k is not an integer, the plots are just not as straight (since ceiling values 

have to be accounted for) but are still asymptotic to the computed r1 and r2 values. 

 

 

Pattern 4: Two Lines with interlinked branches 

 

Cases for this type actually combine properties from the 2 previous cases. In particular, 

they cover the cases when the lengths are unequal (Pattern 2), and at the same time the 

space capacities are unequal (Pattern 3). 

 

At the start of the simulation, the phenomenon observed in pattern 3 is also observed, i.e., 

that of having 2 separate lines at r1 and r2. This is because at the start, the usual “filling-

up” of the space capacities happen. Thus, the ratio values for r1 and r2 use the same formula 

as in the previous case. 

 

The presence of interlinked branches in the plots is also explained by the inequality in the 

lengths of the edges. The critical point at which the branching starts to occur is given at the 

point when the number of agents is n = c1 + c2, the sum of the space capacities of the 2 

edges. As in the second case, the interlinking is periodic (sometimes covering several 

increase-decrease combinations). The reason for this is after the edges have been filled up, 

the succeeding agents that successfully enter a given edge will have exactly the same 

velocity as the last agent that entered the same edge. 

 

In summary, the 4 patterns may be described in 4 quadrants, determined by the relationship 

between the lengths and also the space capacities between the 2 edges, as illustrated in the 

table below 

 

Table 1. Four basic patterns summarized in quadrants. 

 Equal capacities Unequal capacities 

Equal lengths Pattern 1: One line Pattern 3: Two lines 

Unequal lengths Pattern 2: One line with 

interlinked branches 

Pattern 4: Two lines with 

interlinked branches 

 

The summarized information clearly shows that the usage is not only dependent on the 

distance (which the shortest path configuration assumes as the only factor), but also on the 

space capacity. This is the main reason why, as will be shown later, the normal RCSO is 

better than the shortest path configuration. 

 

It should be noted further that there are 4 different patterns for the simple network in this 

study because in each of the two factors (i.e., length and capacity), there are 2 possibilities: 

equality and inequality. 
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If we extend the network to one with 3 edges from the source to the sink, then there will 

be more scenarios for each of the factors. In particular, for the length, if L1, L2 and L3 are 

the measurements for the edges, then, without loss of generality, there are 4 possible 

conditions: 

1. L1 = L2 = L3 

2. L1 = L2 < L3 

3. L1 < L2 = L3 

4. L1 < L2 < L3 

 

All other possible configurations would be equivalent to one of these. For example, the 

condition L1 = L2 > L3 is actually equivalent to the 3rd item in the above list since the 

labeling of the edges may be interchanged. The 4 possible cases imply that the number of 

path usage patterns is 42 = 16. 

 

Similarly, for 4 edges connecting 2 nodes (the source and the sink), the number of possible 

cases are 23, as shown below, and therefore the number of possible patterns is (23)2 = 64. 

 

1. L1 = L2 = L3 = L4 

2. L1 = L2 = L3 < L4 

3. L1 = L2 < L3 = L4 

4. L1 < L2 = L3 = L4 

5. L1 = L2 < L3 < L4 

6. L1 < L2 < L3 = L4 

7. L1 < L2 = L3 < L4 

8. L1 < L2 < L3 < L4 

 

It can be generalized that for a network on 2 vertices with n edges connecting the source to 

the sink, there would be exactly (2n-1)2 possible patterns. This can be derived by fixing the 

order of the edges. Then there are n-1 possible adjacent binary relations, each with 2 

possibilities (i.e., ‘=’ and ‘<’). Thus there are 2n-1 possible length configurations. Similarly, 

there are 2n-1 possible capacity configurations. The number of possible patterns is therefore 

(2n-1)2. 

 

Determining the number of possible patterns further becomes a lot more complex when a 

path from a source to a sink involves more than 1 edge, and especially if different paths 

overlap (i.e., there is a common edge). In any case, what has been clearly established in 

this part of the study is that to achieve the minimum egress time for a given network, the 

distance should not be the only factor; the space capacity of each edge is also a very 

important consideration. 

 

 

 

 

5.2 Egress Time Comparisons 
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Before the egress times of the 3 different configurations are analyzed, we first examine the 

average speeds of the agents in a specific edge.  Figure 7 shows a revealing result. 

 

 
Figure 7. Comparing the average speed of the agents in the 3 configurations. 

 

 

Observe that for the Minimum Egress RCSO, all the agents have the same speed, which is 

the maximum possible speed of 1.2 m/s. This will lead to the (theoretical) minimum egress 

time. However, this is also clearly not possible since it violates the flow-density 

relationship. The ordinary RCSO yields a more realistic flow-density diagram, and is 

further shown to be superior to the shortest path configuration. 

 

Showing now the actual egress time, which is the main focus of this study, we see an 

interesting pattern as well (see Figure 8). 

 

 
Figure 8. Total Agents vs. Egress Time for the Minimum Egress RCSO model. 

 

There appears to be jumping levels, unlike the expected linear increase in egress time.  Such 

behavior actually reflects the limitation of the model used, since an agent at a given discrete 

time step is only allowed to enter an edge if that edge is not yet filled. Because the agents’ 

speeds are not affected by the density (as inferred from Fig. 7), then if c is the space 
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capacity of the edge, exactly c agents are allowed to pass through that edge synchronously, 

from start to end. 

 

Thus, the second level in the plot corresponds to the next batch of agents synchronously 

passing through that edge. If there are b batches of agents, then the plot will have exactly 

b level portions. 

 

A revision of the algorithm can have the agents not simultaneously processed in a single 

discrete time-step. If lag time between agents is placed, then the plot would be more 

consistent with the theoretical egress time, as shown in Fig. 9. 

 

 
Figure 9. Minimum Egress RCSO vs. Theoretical Optimal Configuration. 

 

Finally, we compare the results of the egress times from the 3 different models. The plot 

for this is shown in Fig. 10. 

 

 
Figure 10. Egress times of the 3 models. 

 

From the plot, it is clear that ordinary RCSO yields better egress time than the shortest path 

configuration. Although the egress time of the ordinary RCSO is bigger than that of the 

Minimum Egress RCSO, it still gives much improvement compared to the shortest path 
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configuration. In fact, the gap in the performance of ordinary RCSO compared with the 

shortest path generally increases with increasing crowd size. 

 

An important implication of this last result is that when pedestrian facilities are not too 

crowded, then the shortest path configuration may yield good egress times (i.e., near the 

optimal solution). However, as the size of the crowd increases, such configuration leads to 

egress times that are too far from the theoretical optimal. Ordinary RCSO, in this case can 

approximate the theoretical optimal much better. 

 

 

6. Conclusion 

 

This study aims to simulate optimum egress time. By running SPSA with Tabu list to find 

the best parameter set for the (Minimum Egress) RCSO, a theoretical lower bound of the 

egress time was determined. For such configuration, it was observed that there are 4 

emerging patterns on relative path usage. More importantly, the emerging relative path 

usage is a function mainly of 2 edge attributes: the length and space capacity. This gives 

us hints that the shortest path need not always be the preferred evacuation route because it 

fails to consider the other important edge attribute (space capacity). 

 

Comparing the egress times of ordinary RCSO and shortest path configuration reveals that 

the ordinary RCSO approximates the minimum egress configuration better. RCSO relates 

to people adapting their behavior to local conditions whereas static evacuation maps 

provide a snapshot view of the routes/exits. One practical application of this result is to 

revise egress-helping items, such as evacuation maps, in order to encourage an evacuation 

that follows ordinary RCSO instead of the simple shortest path. For instance, instead of 

displaying only the shortest path in an evacuation map, a primary exit route and a secondary 

exit route may be displayed. Alternatively, the shortest path in some of the maps may be 

replaced by slightly longer (but more spacious) paths so that congestion on some paths may 

be decreased, leading to the emergence of an RCSO-like evacuation behavior.  

 

When multiple routes are displayed on evacuation maps, the occupants can have options 

to alter their route choice. However, the exercise of such options by the occupants is not 

guaranteed. It is also not guaranteed that large crowds will follow the routes suggested on 

evacuation maps. It is not yet clear how influential the "following the crowd” behavior is 

against evacuation map information. Such possible deviations should be addressed in some 

further studies. 

 

As a final note, the insights gathered in this study resulted from a simple network. It was 

shown that, as the number of edges increases, the number of possible path usage patterns 

increases exponentially.  It would be very interesting to find some emerging patterns for 

these as well. Another direction, therefore, for further studies can investigate some major 

patterns for more complex networks.   
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