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ABSTRACT 
 
In this paper we introduce a novel online path planning method that mimics the 
human sense of navigation for finding a path between the current location (the 
‘origin’) and the destination point. Most pedestrian simulation systems pre-compute a 
minimum cost (e.g. shortest length) path. Such an approach implies that the simulated 
agents have perfect knowledge of the infrastructure. Moreover, pre-computing the 
path can be numerically infeasible in situations where some of the obstacles are of 
dynamic nature, e.g. doors that might be closed or open, escalators which might 
operate or be under repair or obscure regions of parks which pedestrians choose not to 
frequent at night time. For such dynamic environments, the shortest path needs to be 
pre-computed for every - out of many - possible combination. The algorithm proposed 
in this paper assumes that the modelled agent may or may not have any prior 
knowledge of the infrastructure but is able to locate the direction of the destination at 
all times. The proposed navigation algorithm is an iterative procedure to maximize the 
values of smoothed distance and directional function from the destination to the 
origin. Such an algorithm is guaranteed to find a path from the origin to the 
destination if such a path exists at all. The proposed method has been implemented in 
a pedestrian multi agent simulation and has been tested on scenarios with different 
complexities.  
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INTRODUCTION  
 
In this paper we consider the problem of finding a path from an entry point to a target 
point in a dynamic infrastructure in the context of pedestrian simulation. Pedestrian 
simulation is a representation of pedestrian movement using a set of mathematical 
models that can be used to evaluate various designs of pedestrian facilities during the 
planning stage. The term 'infrastructure' is used for public infrastructures such as train 
stations, airports, shopping centres and also for parks and areas of a town (such as e.g. 
town districts). 'Dynamic' refers to different configurations of the considered 
infrastructure resulting from the presence or absence of mobile obstructions (e.g. open 
or closed doors, closed walkways or parks with gate opening hours in the case of 
larger regions considered). We consider a dynamic environment consisting of several 
obstructions, in which some obstructions can be dynamically changed (e.g. doors can 
be open and close, broken escalator need to be repaired for some time, etc.). 
 
This problem arises in the context of agent based models for pedestrian motion.  
Recently, most of the prominent pedestrian simulation models are mainly based on 
either Cellular Automata [Kretz and Schreckenberg (2006), Schadschneider (2001), 
Blue and Adler (2000)] or Force model [Helbing and Molnár (1995), Teknomo and 
Gerilla, (2005)]. These simulation models, however, do not consider pedestrian 
navigation. Such simulation models are working very well only to simulate 
pedestrians in single or double rooms with simple obstructions. In the absence of 
obstructions such as walls or a room with a table in the middle, etc. pedestrian agents 
can move forward and avoid simple obstructions; still they cannot find a way to the 
destination if the destination is hidden behind an obstruction. Only based on such 
models alone, pedestrian agents will be able to move from origin cells to destination 
cells if and only if the line connecting origin and destination (OD line) does not pass 
any obstruction. To simulate a more realistic and complex infrastructure, however, 
pedestrian agents should be able to navigate from one place to another in the presence 
of obstructions. Hence, a navigation algorithm is needed.  
 
Path planning in a static environment can be computed by many methods such as 
region decomposition with the visibility graph, navigation grid, shortest distance map 
or dynamic programming, roadmap or skeleton, landmark based navigation, depth 
first tree and potential field [e.g. Lee (1983), Latombe (1995), Hershberger and Suri 
(1999)]. Usually, wayfinding tasks are solved based on the assumption that the agents 
always use the shortest path to reach their aim. Hoogendoorn and Bovy (2004), for 
example, include navigation in their level of strategic planning where the path is 
always assumed to be chosen optimal according to a specific criterion function. This 
optimization implies that all information is available from the outset. Moreover, they 
only deal with the static case where the geometry of the considered infrastructure is 
fixed and known to the agents. In this standard setting, the agents determine their path 
typically by minimizing some cost function such as the length of the path or the 
walking time. However, there are many settings in which it is unrealistic to assume 
that the agent immediately finds the shortest path. Such a situation arises, for instance, 
when using a hiking map providing only imperfect information about the possible 



paths, or when searching for the exit in the main hall of a train station which is solely 
marked with a sign attached high on a wall above the exit.  
 
Our approach differs from this static, cost optimizing navigation in two aspects: First 
we consider a dynamic environment where many obstructions potentially vary. A 
quick re-computation of the cost of the optimal route under all different possible 
configurations becomes infeasible since the number of combinations equals 2N where 
N denotes the number of dynamic obstructions. Thus, for five dynamic obstacles 32 
different configurations have to be calculated. Secondly, we do not rely on the 
assumption that the pedestrian agents possess a map of the infrastructure available nor 
have prior knowledge and experience to use the infrastructure well at the time of 
entry. In fact, this paper tries to supply a novel algorithm for wayfinding in which the 
model includes a degree of information parameter to cope with variations of prior 
knowledge of the infrastructures. The infrastructure can be assumed as either initially 
unknown, partially known to some degree or fully recognized by the subject trying to 
find her way.  
 
The remaining article is outlined as follow. The next section provides a brief 
discussion of the mesoscopic pedestrian multi agent simulation model and how the 
environment is modelled spatially. Then, in the Dynamic Navigation section we 
explain our navigation algorithm for both static and dynamic environment. First we 
describe the navigation matrix for static environments, and then we generalize the 
same navigation matrix for a dynamic environment. Before the conclusions, we 
demonstrate the navigations for dynamic environment through example of scenarios 
to investigate the effect of degree of information toward the infrastructure. 
 
 
 
PEDESTRIAN MULTI AGENT SYSTEM 
 
The basic pedestrian simulation model used in this article is a state based spatial 
model of cellular automata (CA). Time and space are discrete and the movements of 
pedestrian agents are described by a set of rules. Wolfram (2002) stated that many CA 
models are equivalent to partial differential equations. However, CA represents a 
larger set of dynamical systems as the rules are not necessarily in algebraic form.  
 
The environment is modelled as a regular lattice and the space is spatially 
decomposed into cells. For each pedestrian agent, each cell represents a state of being 
at a particular location and the next state is restricted only to the nine neighbouring 
cells including the current state as illustrated in Figure 1. These nine neighbouring 
cells are often called Moore neighbourhood (Wolfram (2002)). The layout plan of the 
virtual environment is divided into grid cells of a certain diameter (e.g. about 0.5 
meter up to 2 meters) and represented in the model as a binary matrix. Zero value in 
the matrix represents a wall or other obstruction and the value of one indicates a free 
space for the agents to occupy and move around. The binary values also emphasize 
the permissible state since pedestrian agents are not allowed to consider an 
obstruction cell as a possible next state. Without losing generality, the measurement to 
move around uses the chessboard distance instead of the Euclidean distance to ease 
the computation since diagonal positions are not considered as different distances. 



The cell diameter is measured as an average diameter of the inner circle and the outer 
circle of each grid cell.  
 

 
Figure 1. Possible next state transitions 

 
Different from the existing pedestrian microscopic CA models [e.g. Blue and Adler 
(2000), Schadschneider (2001), Kretz and Schreckenberg (2006)], our model does not 
impose the restriction that a cell can be occupied only by a single pedestrian agent. In 
fact, the model generalizes microscopic CA in a way that a cell can be occupied by 
any number of agents up to the maximum density of a cell. A special case occurs 
when we use a diameter of 0.5 meters and the probability to enter the next cell is one 
if there is no pedestrian in that cell, and the probability equals zero if the cell is 
occupied. By employing a restriction of one cell for one agent, we will regain the 
microscopic CA model. In this sense, our mesoscopic model forms a kind of 
generalization of pedestrian simulations using the CA model. 
 

Table 1. Probability to enter next cell as function of cell density 
Number of pedestrians in a cell  Probability to enter this cell for 

another pedestrian 
0 1.0 
1 0.8 
2 0.6 
3 0.4 
4 0.2 
5 0.0 

 
The interactions among pedestrian agents are described by two functions of density 
which are imposed for each lattice cell. The first function refers to the probability to 
enter the next cell, while the second function refers to the speed density relationship. 
These two functions can be displayed in tables. Table 1 shows an example of the 
probability function to enter the next cells in the neighbourhood for a cell diameter of 
1 meter. The relationship is linear up to a maximum density of 5 pedestrians per cell. 
An increasing amount of pedestrians situated in a certain cell will decrease the 
probability of an additional pedestrian to enter this particular cell. Neufert (2000) 
provides a rough guideline concerning pedestrians moving at normal speed, which 



specifies the space they occupy with an area of approximately 75 cm by 62.5 cm for 
foot placement, not including the space between pedestrians. This equates the area 
module of 0.47 square meters or a density of about 4 to 5 pedestrians per square 
meter. 
 
The agent’s timing to go out of a cell is influenced by the cell diameter and the 
agent’s current speed while the current agent’s speed is a factor of density. An 
example of the linear speed density relationship is outlined in Table 2 for the same 
cell diameter of one meter. The maximum density is 5 pedestrians per cell and the 
maximum speed is 1.4 meter/seconds. 
 

Table 2. Linear Speed-Density Relationship 
Density (number of pedestrian per cell area) Speed in m/s 

0 1.40 
1 1.12 
2 0.84 
3 0.56 
4 0.28 
5 0.00 

 
If u denotes the speed in meter/second and k  is the density (represented by a discrete 
number of pedestrians per cell area), the theoretical relationship between speed and 
density can be generalized by setting it as an approximation function of a cumulative 
Beta distribution.  
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The denominator ( ),B α β  is the Beta function formulated similar to the Incomplete 
Beta function with 1x = , which is 
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The range of two parameters is 0α >  and 0β > . The linear function is a special case 
when 1α β= = .  
 
Each pedestrian is modelled as an agent that keeps his or her own properties, such as 
the time to enter and leave a cell, the agent’s speed and the tracked trajectory. The 
movement vector of each agent is selected based on the maximum argument of a 
normalized neighbourhood function. A neighbourhood function is a Moore 
neighbourhood subset of a matrix with the current position of a pedestrian agent 
located in the centre. Taking the neighbourhood function of three matrices – the 
binary layout matrix, the matrix probability to enter a cell and the navigation matrix – 
and multiplying them as a Hadamard product, followed by normalizing the product to 
the range of [0,1] produces the normalized neighbourhood function. The navigation 



matrix will be explained more detailed in the next section. The normalization is 
necessary to avoid a bias of higher values in the navigation matrix.  
 
 
DYNAMIC NAVIGATION 
 
The navigation principle aims at finding the next higher state value. Here, the 
navigation is similar to optimization methods such as hill climbing. Instead of finding 
the best route to the top of the hill function, the navigation of the agents is simply 
done by using the maximum neighbourhood values. The problem now is to find a hill 
function which has continuously increasing values from any neighbourhood states to a 
specified destination location. 
 
As mentioned in the last section, one of the main factors for pedestrian movements is 
a navigation matrix. The navigation matrix is a normalized displacement vector 
function which guides the movements of a pedestrian agent towards the destination. 
Assuming the origin cell being a source basin and destination cell being a sink basin 
in a dynamical system, and assuming that all neighbourhood cells are connected from 
the source basin to the sink basin, we can model the values of the navigation matrix as 
a function of distance and the direction of any cell towards the destination cell (i.e. 
sink basin). All agents originate from the source basins and they will be ‘repelled’ 
from the source due to the attraction of the sink. Given such a continuously increasing 
function, all agents will eventually be guaranteed to reach the sink if such a path 
exists. 
 
Since the values are normalized, the real value of the navigation matrix is not 
important. It is the comparison value between one cell and the other within a 
neighbourhood that is essential to guide a pedestrian’s movement. A lower distance 
between a cell and the destination, and a more direct way to reach the destination, will 
lead to a higher value in the navigation matrix. Destination cells will have the highest 
values while all other free cells are smoothed down towards zero. The lowest value of 
a navigation matrix is associated with the origin cell (i.e. source basin).  
 
At first glance, more advance readers may find similarity between our concept of a 
navigation matrix and the potential field theory. The similarity happens because both 
potential field and our navigation matrix uses source basin and obstructions produce 
repelling fields while the sink basin produce attractive fields. The detailed concept, 
however, is different. Potential field uses vector representation that any point is space 
that has magnitude and direction. The problem with potential field comes in adjusting 
the combination strength of several fields. Sometime the field that pushing away from 
obstructions can prevent the solution of any path. Local minima make the agent stuck. 
Adding noise and outward source field is not a guarantee for non-local minima.  
 
In contrast, our concept of navigation matrix is a cellular representation of what we 
called sink propagation value. Sink propagation value (SPV) is a value on vertex on a 
network graph that monotonically increasing (or decreasing) from sink vertex 
according to the minimum distance function from that vertex to the sink. Therefore, 
the value of navigation matrix is represented by scalar value that only has normalized 
magnitude at certain point. The direction is implicit, as it is given in the 
neighbourhood rather than at a certain point in space. The navigation matrix 



computation has already contained full navigation information on the static 
environment such as obstructions and wall. No additional combination of SPV is 
needed for static environment. The magnitude of SPV is normalized such that 
combination of SPV is only needed for dynamic environment.  
 
Unlike potential field that require each agent also to have its own potential field, in 
our model, agent is independent of the SPV thus can be model independently. Local 
minimum, however, may exist in the navigation matrix only if the sink value is too 
small or the location cell has no connection path to the sink. The solution is simply to 
increase the strength of attraction value if the layout is somewhat complicated. 
 
There are many ways to compute a navigation matrix with the above-mentioned 
properties such as using Q learning or distance transform. We presented here a fast 
computational method to obtain a navigation matrix through the smoothing relaxation 
method (Winston, 1993). 
 
The smoothing relaxation method arbitrates between smoothness expectations and the 
actual data based on local constraints. It is a smoothing or numerical interpolation 
method to fill the gap between measurements based on the confidence level of the 
data. Given a measurement matrix and a corresponding confidence level matrix 
( 0 1ic≤ ≤ ), the measurement data are interpolated based on the values of the four 
neighbours.  
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Figure 2. Layout plan of three rooms with open doors (left) and its navigation matrix 

(right) 
 
The navigation matrix Q  is obtained from the binary matrix that represents the static 
environment. The confidence level matrix is a binary matrix where sinks and 
obstruction cells have one confidence levels while a free space has zero confidence 
level. A zero confidence level indicates no measurements in the free space cells, while 
a 100% confidence level is assigned to a sink and obstruction to impose the 
importance of those values. High positive sink values are assigned to ensure the 
navigation ability of the agents. Low sink values do not provide enough “strength” to 
allow pedestrians to overcome the obstructions which causes the pedestrian agents to 
move around some regions without the ability to reach a destination. In general, 



setting a high value beyond a certain critical value results in unchanging movement 
patterns regardless of the values. Figure 2 on the left shows an example of a layout 
with three rooms connected by four open doors. The right figure shows the navigation 
matrix of the layout. Lighter colour represents higher navigation value. The 
navigation value is gradually increasing from the source basin towards the sink in 
monotonic manner. The highest navigation values occur on the sink basin. 
 
Implicitly, the basic assumption on the navigation matrix described above is perfect 
information among pedestrian agents to know all the routes. In other words, 
pedestrian agents are assumed to have apriori knowledge on the infrastructure. Such 
assumption is only valid for a static environment when the layout plan does not 
change over time. As emphasized on the introduction, for dynamic environment with 
many doors opened and closed during the simulation, pre-computation of such 
combination of navigation matrices is computationally infeasible. To implement such 
users’ interactivity, we need to have another navigation matrix. 
 
Now we would like to introduce a method to navigate in dynamic environments. 
Instead of using another model for navigation matrix computation, we generalized the 
navigation algorithm for dynamic environments into the following formulation: 
 

( ) currentinitial QQQ ⋅+⋅−= γγ1     (5) 
 
The computation of a navigation matrix remains the same as described in equation (4) 
for two different setting in the layout plans. The initial navigation matrix is pre-
computed for static environments with all doors open while the current navigation 
matrix is computed during the simulation according to the current situation of the 
configurations of the doors. A smoothing parameter 10 ≤≤ γ  is added to highlight 
the degree of information. A higher the value of γ  represents a higher degree of 
information based on the agent’s knowledge and previous experience concerning the 
infrastructure (e.g. is the door in the next room already open or not).  
 
The navigation matrix for dynamic environments is actually a generalization of the 
navigation in static environments, because – without the existence of any door – the 
initial navigation matrix is equal to the current navigation matrix and equation (5) 
produces the same navigation matrix for whatever value ofγ . 
  
SIMULATION RESULTS 
 
In this section we illustrate the navigations for dynamic environments through simple 
scenarios of a layout plan with three rooms, where each room is connected to the next 
room by a couple of doors as shown in Figure 3. The network graph corresponding to 
the layout plan is also shown. The behaviour of pedestrian agents near open and 
closed doors were investigated and compared to a more realistic behaviour that 
mimics the human sense of navigation. 
 
The first scenario is the base scenario running for static environments where all doors 
are open. Figure 4 shows three scenes where pedestrian agents select the best route 
automatically according to the shortest distance (and therefore travel time) to the 
destination from the source basin (Figure 4(a)), move through door A C and B D 



(Figure 4(b)) and finally reach the sink basin (Figure 4(c)). There is no flow from 
door A to door D or from door B to door C. The figures show spatial density: darker 
cells indicate higher density and lighter cells represent low density. 

 
Figure 3. Layout plan of 3 rooms with 4 doors (top) and the network graph associated 

with the layout (bottom) 
 
 

     
(a)     (b)      (c)  

Figure 4. Running simulation in static environment 
 
All scenarios below are designed to illustrate interactivity in dynamic environments. 
All doors were set to be closed at the beginning of the simulation to demonstrate the 
behaviour of pedestrian agents for different values of degree of information. 
 

     
(a)     (b)      (c)  

Figure 5. Running simulation in a dynamic environment at no information ( 0=γ ) 



 
The second scenario is running in a dynamic environment with no information 
regarding the infrastructure (i.e. 0=γ ). Figure 5(a) shows that the agents will queue 
in front of the nearest door in the first room because all doors are closed. The queuing 
arc similar to real pedestrian behaviour was observed. Then door A that connects the 
first and second room is opened and the agents who first queued in front of door A are 
now queuing in front of door C as shown in figure 5(b). Figure 5(c) illustrates the next 
step when door D opens and no pedestrian agents will pass through door D. This 
phenomenon happens because the agents do not have any information regarding the 
doors except for the nearest door. 
 

     
(a)     (b)      (c)  

Figure 6. Running simulation in dynamic environment at full information ( 1=γ ) 
 
In contrast to the second scenario, the third scenario was concerns a dynamic 
environment where all agents have full information regarding all routes in the 
infrastructure ( 1=γ ). Pedestrian agents do not queue in front of doors. They move 
around in the middle of the first room to optimize the way to the doors probably 
opening because they don’t know which door will be opened at first as illustrated in 
Figure 6(a). When door A is opened, several pedestrian agents start to enter the 
second room and move around in the second room as shown in Figure 6(b). Then, 
door D is opened and all pedestrian agents move through door A and then through 
door D as shown in Figure 6(c). 
 
The two extreme parameter settings on the two scenarios in dynamic environments 
above do not fully represent the realistic behaviour of pedestrians in the real world. 
More realistic pedestrian agent behaviour in front of closed and open doors shall be 
emphasized to produce the following behaviours: 

• Pedestrians can queue in front of the door. 
• Pedestrians are attracted to pass through a door where there is a queue when 

the door is opened, unless there is another door nearby, which is open. A very 
far open door will be disregarded. 

• Pedestrians go to the next room if the door in front of the agent is opened and 
stay there waiting for the next door to be opened. This behaviour happens 
regardless whether there is a cell connection to the sink basin or not for the 
current layout configuration, as long as a connecting door ((i.e. closed door) to 
the sink basin is existing. 

 
A more realistic behaviour as listed above can be reached when both a pre-computed 
initial navigation matrix and a re-computation of the navigation matrix for the current 
layout configuration exist. In other words, the value of information degree γ  must be 
adjusted to produce behaviour as listed above. Different layout plans need different 



settings of the parameter; for the layout plan with three rooms above, we found that γ  
range about 0.7 to 0.85 produces quite satisfying results as shown in figure 7. Some 
pedestrian agents still queue in front of the closed door (due to lack of information) 
while some of them are proceeding to the destination by a finding new route. Of 
course the trajectory path of pedestrian agents in a dynamic environment will not 
always have shortest length. 
 

     
Figure 7. Running simulation in dynamic environment at 7.0=γ  

 
 
CONCLUSIONS & FURTHER STUDIES 
 
We attempted to model a pedestrian agent’s wayfinding at a mesoscopic level of 
detail in a dynamic environment where the doors can be opened and closed at running 
time. Using normal pre-computation procedures, the combination of layout 
configuration soon goes beyond feasible computation. We generalize the navigation 
matrix based on a smoothing relaxation of spatial lattice permission to produce a more 
realistic behaviour of pedestrian agents that could queue in front of closed doors, 
move to the next room when the door is opened and find another door if a farther door 
is the one which is opened. It is quite appealing that this simple model could mimic 
human behaviour in navigation, in queuing and walking nearer to the shortest path 
and finding the way to the new open door. It was also found that when the 
corresponding agents’ focus on the previous knowledge, they tend to follow a global 
pattern of previous experience.  
 
Still there are several questions raising in this introductory approach. How to calibrate 
such a model spatially are still open question. Comparison of the flow performance of 
more complex scenarios  and the effect of changing parameters such as information 
degree, strength of attraction and speed density relationship in other types of facilities 
are also subject to further studies. 
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