
Proceeding of the 11th World Conference on Transport Research (WCTR), University
of California, Berkeley, 2007

A NAVIGATION ALGORITHM FOR
PEDESTRIAN SIMULATION IN DYNAMIC
ENVIRONMENTS

Kardi Teknomo1 and Alexandra Millonig2

1 Ir., M.Eng, Ph.D., Senior Researcher, Arsenal Research, Austria
(teknomo@gmail.com)

2 DI., Researcher, Vienna University of Technology, Austria
Alexandra.Millonig@arsenal.ac.at

Address:
Arsenal Research, Giefinggasse 2, Vienna 1210, Austria

A NAVIGATION ALGORITHM FOR
PEDESTRIAN SIMULATION IN DYNAMIC
ENVIRONMENTS

Kardi Teknomo1 and Alexandra Millonig2
1 Arsenal Research, Austria
2 Vienna University of Technology, Austria

ABSTRACT

In this paper we introduce a novel online path planning method that mimics the
human sense of navigation for finding a path between the current location (the
‘origin’) and the destination point. Most pedestrian simulation systems pre-compute a
minimum cost (e.g. shortest length) path. Such an approach implies that the simulated
agents have perfect knowledge of the infrastructure. Moreover, pre-computing the
path can be numerically infeasible in situations where some of the obstacles are of
dynamic nature, e.g. doors that might be closed or open, escalators which might
operate or be under repair or obscure regions of parks which pedestrians choose not to
frequent at night time. For such dynamic environments, the shortest path needs to be
pre-computed for every - out of many - possible combination. The algorithm proposed
in this paper assumes that the modelled agent may or may not have any prior
knowledge of the infrastructure but is able to locate the direction of the destination at
all times. The proposed navigation algorithm is an iterative procedure to maximize the
values of smoothed distance and directional function from the destination to the
origin. Such an algorithm is guaranteed to find a path from the origin to the
destination if such a path exists at all. The proposed method has been implemented in
a pedestrian multi agent simulation and has been tested on scenarios with different
complexities.

Keywords: wayfinding, multi agents, mesoscopic, relaxation, sink propagation value

INTRODUCTION

In this paper we consider the problem of finding a path from an entry point to a target
point in a dynamic infrastructure in the context of pedestrian simulation. Pedestrian
simulation is a representation of pedestrian movement using a set of mathematical
models that can be used to evaluate various designs of pedestrian facilities during the
planning stage. The term 'infrastructure' is used for public infrastructures such as train
stations, airports, shopping centres and also for parks and areas of a town (such as e.g.
town districts). 'Dynamic' refers to different configurations of the considered
infrastructure resulting from the presence or absence of mobile obstructions (e.g. open
or closed doors, closed walkways or parks with gate opening hours in the case of
larger regions considered). We consider a dynamic environment consisting of several
obstructions, in which some obstructions can be dynamically changed (e.g. doors can
be open and close, broken escalator need to be repaired for some time, etc.).

This problem arises in the context of agent based models for pedestrian motion.
Recently, most of the prominent pedestrian simulation models are mainly based on
either Cellular Automata [Kretz and Schreckenberg (2006), Schadschneider (2001),
Blue and Adler (2000)] or Force model [Helbing and Molnár (1995), Teknomo and
Gerilla, (2005)]. These simulation models, however, do not consider pedestrian
navigation. Such simulation models are working very well only to simulate
pedestrians in single or double rooms with simple obstructions. In the absence of
obstructions such as walls or a room with a table in the middle, etc. pedestrian agents
can move forward and avoid simple obstructions; still they cannot find a way to the
destination if the destination is hidden behind an obstruction. Only based on such
models alone, pedestrian agents will be able to move from origin cells to destination
cells if and only if the line connecting origin and destination (OD line) does not pass
any obstruction. To simulate a more realistic and complex infrastructure, however,
pedestrian agents should be able to navigate from one place to another in the presence
of obstructions. Hence, a navigation algorithm is needed.

Path planning in a static environment can be computed by many methods such as
region decomposition with the visibility graph, navigation grid, shortest distance map
or dynamic programming, roadmap or skeleton, landmark based navigation, depth
first tree and potential field [e.g. Lee (1983), Latombe (1995), Hershberger and Suri
(1999)]. Usually, wayfinding tasks are solved based on the assumption that the agents
always use the shortest path to reach their aim. Hoogendoorn and Bovy (2004), for
example, include navigation in their level of strategic planning where the path is
always assumed to be chosen optimal according to a specific criterion function. This
optimization implies that all information is available from the outset. Moreover, they
only deal with the static case where the geometry of the considered infrastructure is
fixed and known to the agents. In this standard setting, the agents determine their path
typically by minimizing some cost function such as the length of the path or the
walking time. However, there are many settings in which it is unrealistic to assume
that the agent immediately finds the shortest path. Such a situation arises, for instance,
when using a hiking map providing only imperfect information about the possible

paths, or when searching for the exit in the main hall of a train station which is solely
marked with a sign attached high on a wall above the exit.

Our approach differs from this static, cost optimizing navigation in two aspects: First
we consider a dynamic environment where many obstructions potentially vary. A
quick re-computation of the cost of the optimal route under all different possible
configurations becomes infeasible since the number of combinations equals 2N where
N denotes the number of dynamic obstructions. Thus, for five dynamic obstacles 32
different configurations have to be calculated. Secondly, we do not rely on the
assumption that the pedestrian agents possess a map of the infrastructure available nor
have prior knowledge and experience to use the infrastructure well at the time of
entry. In fact, this paper tries to supply a novel algorithm for wayfinding in which the
model includes a degree of information parameter to cope with variations of prior
knowledge of the infrastructures. The infrastructure can be assumed as either initially
unknown, partially known to some degree or fully recognized by the subject trying to
find her way.

The remaining article is outlined as follow. The next section provides a brief
discussion of the mesoscopic pedestrian multi agent simulation model and how the
environment is modelled spatially. Then, in the Dynamic Navigation section we
explain our navigation algorithm for both static and dynamic environment. First we
describe the navigation matrix for static environments, and then we generalize the
same navigation matrix for a dynamic environment. Before the conclusions, we
demonstrate the navigations for dynamic environment through example of scenarios
to investigate the effect of degree of information toward the infrastructure.

PEDESTRIAN MULTI AGENT SYSTEM

The basic pedestrian simulation model used in this article is a state based spatial
model of cellular automata (CA). Time and space are discrete and the movements of
pedestrian agents are described by a set of rules. Wolfram (2002) stated that many CA
models are equivalent to partial differential equations. However, CA represents a
larger set of dynamical systems as the rules are not necessarily in algebraic form.

The environment is modelled as a regular lattice and the space is spatially
decomposed into cells. For each pedestrian agent, each cell represents a state of being
at a particular location and the next state is restricted only to the nine neighbouring
cells including the current state as illustrated in Figure 1. These nine neighbouring
cells are often called Moore neighbourhood (Wolfram (2002)). The layout plan of the
virtual environment is divided into grid cells of a certain diameter (e.g. about 0.5
meter up to 2 meters) and represented in the model as a binary matrix. Zero value in
the matrix represents a wall or other obstruction and the value of one indicates a free
space for the agents to occupy and move around. The binary values also emphasize
the permissible state since pedestrian agents are not allowed to consider an
obstruction cell as a possible next state. Without losing generality, the measurement to
move around uses the chessboard distance instead of the Euclidean distance to ease
the computation since diagonal positions are not considered as different distances.

The cell diameter is measured as an average diameter of the inner circle and the outer
circle of each grid cell.

Figure 1. Possible next state transitions

Different from the existing pedestrian microscopic CA models [e.g. Blue and Adler
(2000), Schadschneider (2001), Kretz and Schreckenberg (2006)], our model does not
impose the restriction that a cell can be occupied only by a single pedestrian agent. In
fact, the model generalizes microscopic CA in a way that a cell can be occupied by
any number of agents up to the maximum density of a cell. A special case occurs
when we use a diameter of 0.5 meters and the probability to enter the next cell is one
if there is no pedestrian in that cell, and the probability equals zero if the cell is
occupied. By employing a restriction of one cell for one agent, we will regain the
microscopic CA model. In this sense, our mesoscopic model forms a kind of
generalization of pedestrian simulations using the CA model.

Table 1. Probability to enter next cell as function of cell density
Number of pedestrians in a cell Probability to enter this cell for

another pedestrian
0 1.0
1 0.8
2 0.6
3 0.4
4 0.2
5 0.0

The interactions among pedestrian agents are described by two functions of density
which are imposed for each lattice cell. The first function refers to the probability to
enter the next cell, while the second function refers to the speed density relationship.
These two functions can be displayed in tables. Table 1 shows an example of the
probability function to enter the next cells in the neighbourhood for a cell diameter of
1 meter. The relationship is linear up to a maximum density of 5 pedestrians per cell.
An increasing amount of pedestrians situated in a certain cell will decrease the
probability of an additional pedestrian to enter this particular cell. Neufert (2000)
provides a rough guideline concerning pedestrians moving at normal speed, which

specifies the space they occupy with an area of approximately 75 cm by 62.5 cm for
foot placement, not including the space between pedestrians. This equates the area
module of 0.47 square meters or a density of about 4 to 5 pedestrians per square
meter.

The agent’s timing to go out of a cell is influenced by the cell diameter and the
agent’s current speed while the current agent’s speed is a factor of density. An
example of the linear speed density relationship is outlined in Table 2 for the same
cell diameter of one meter. The maximum density is 5 pedestrians per cell and the
maximum speed is 1.4 meter/seconds.

Table 2. Linear Speed-Density Relationship
Density (number of pedestrian per cell area) Speed in m/s

0 1.40
1 1.12
2 0.84
3 0.56
4 0.28
5 0.00

If u denotes the speed in meter/second and k is the density (represented by a discrete
number of pedestrians per cell area), the theoretical relationship between speed and
density can be generalized by setting it as an approximation function of a cumulative
Beta distribution.

()
()

,
1

,
kB

u
B

α β
α β

= − (1)

The nominator (),xB α β is the Incomplete Beta Function formulated as

() () 11

0

, 1
x

xB g g dgβαα β −−= −∫ (2)

The denominator (),B α β is the Beta function formulated similar to the Incomplete
Beta function with 1x = , which is

() ()
1

11

0

, 1B g g dgβαα β −−= −∫ (3).

The range of two parameters is 0α > and 0β > . The linear function is a special case
when 1α β= = .

Each pedestrian is modelled as an agent that keeps his or her own properties, such as
the time to enter and leave a cell, the agent’s speed and the tracked trajectory. The
movement vector of each agent is selected based on the maximum argument of a
normalized neighbourhood function. A neighbourhood function is a Moore
neighbourhood subset of a matrix with the current position of a pedestrian agent
located in the centre. Taking the neighbourhood function of three matrices – the
binary layout matrix, the matrix probability to enter a cell and the navigation matrix –
and multiplying them as a Hadamard product, followed by normalizing the product to
the range of [0,1] produces the normalized neighbourhood function. The navigation

matrix will be explained more detailed in the next section. The normalization is
necessary to avoid a bias of higher values in the navigation matrix.

DYNAMIC NAVIGATION

The navigation principle aims at finding the next higher state value. Here, the
navigation is similar to optimization methods such as hill climbing. Instead of finding
the best route to the top of the hill function, the navigation of the agents is simply
done by using the maximum neighbourhood values. The problem now is to find a hill
function which has continuously increasing values from any neighbourhood states to a
specified destination location.

As mentioned in the last section, one of the main factors for pedestrian movements is
a navigation matrix. The navigation matrix is a normalized displacement vector
function which guides the movements of a pedestrian agent towards the destination.
Assuming the origin cell being a source basin and destination cell being a sink basin
in a dynamical system, and assuming that all neighbourhood cells are connected from
the source basin to the sink basin, we can model the values of the navigation matrix as
a function of distance and the direction of any cell towards the destination cell (i.e.
sink basin). All agents originate from the source basins and they will be ‘repelled’
from the source due to the attraction of the sink. Given such a continuously increasing
function, all agents will eventually be guaranteed to reach the sink if such a path
exists.

Since the values are normalized, the real value of the navigation matrix is not
important. It is the comparison value between one cell and the other within a
neighbourhood that is essential to guide a pedestrian’s movement. A lower distance
between a cell and the destination, and a more direct way to reach the destination, will
lead to a higher value in the navigation matrix. Destination cells will have the highest
values while all other free cells are smoothed down towards zero. The lowest value of
a navigation matrix is associated with the origin cell (i.e. source basin).

At first glance, more advance readers may find similarity between our concept of a
navigation matrix and the potential field theory. The similarity happens because both
potential field and our navigation matrix uses source basin and obstructions produce
repelling fields while the sink basin produce attractive fields. The detailed concept,
however, is different. Potential field uses vector representation that any point is space
that has magnitude and direction. The problem with potential field comes in adjusting
the combination strength of several fields. Sometime the field that pushing away from
obstructions can prevent the solution of any path. Local minima make the agent stuck.
Adding noise and outward source field is not a guarantee for non-local minima.

In contrast, our concept of navigation matrix is a cellular representation of what we
called sink propagation value. Sink propagation value (SPV) is a value on vertex on a
network graph that monotonically increasing (or decreasing) from sink vertex
according to the minimum distance function from that vertex to the sink. Therefore,
the value of navigation matrix is represented by scalar value that only has normalized
magnitude at certain point. The direction is implicit, as it is given in the
neighbourhood rather than at a certain point in space. The navigation matrix

computation has already contained full navigation information on the static
environment such as obstructions and wall. No additional combination of SPV is
needed for static environment. The magnitude of SPV is normalized such that
combination of SPV is only needed for dynamic environment.

Unlike potential field that require each agent also to have its own potential field, in
our model, agent is independent of the SPV thus can be model independently. Local
minimum, however, may exist in the navigation matrix only if the sink value is too
small or the location cell has no connection path to the sink. The solution is simply to
increase the strength of attraction value if the layout is somewhat complicated.

There are many ways to compute a navigation matrix with the above-mentioned
properties such as using Q learning or distance transform. We presented here a fast
computational method to obtain a navigation matrix through the smoothing relaxation
method (Winston, 1993).

The smoothing relaxation method arbitrates between smoothness expectations and the
actual data based on local constraints. It is a smoothing or numerical interpolation
method to fill the gap between measurements based on the confidence level of the
data. Given a measurement matrix and a corresponding confidence level matrix
(0 1ic≤ ≤), the measurement data are interpolated based on the values of the four
neighbours.

()1 (1,) (1,) (, 1) (, 1)(,) (,) (,) 1 (,)
4

k k k k
k k a i j a i j a i j a i ja i j a i j c i j c i j+ − + + + − + +

= ⋅ + − ⋅ (4)

Figure 2. Layout plan of three rooms with open doors (left) and its navigation matrix

(right)

The navigation matrix Q is obtained from the binary matrix that represents the static
environment. The confidence level matrix is a binary matrix where sinks and
obstruction cells have one confidence levels while a free space has zero confidence
level. A zero confidence level indicates no measurements in the free space cells, while
a 100% confidence level is assigned to a sink and obstruction to impose the
importance of those values. High positive sink values are assigned to ensure the
navigation ability of the agents. Low sink values do not provide enough “strength” to
allow pedestrians to overcome the obstructions which causes the pedestrian agents to
move around some regions without the ability to reach a destination. In general,

setting a high value beyond a certain critical value results in unchanging movement
patterns regardless of the values. Figure 2 on the left shows an example of a layout
with three rooms connected by four open doors. The right figure shows the navigation
matrix of the layout. Lighter colour represents higher navigation value. The
navigation value is gradually increasing from the source basin towards the sink in
monotonic manner. The highest navigation values occur on the sink basin.

Implicitly, the basic assumption on the navigation matrix described above is perfect
information among pedestrian agents to know all the routes. In other words,
pedestrian agents are assumed to have apriori knowledge on the infrastructure. Such
assumption is only valid for a static environment when the layout plan does not
change over time. As emphasized on the introduction, for dynamic environment with
many doors opened and closed during the simulation, pre-computation of such
combination of navigation matrices is computationally infeasible. To implement such
users’ interactivity, we need to have another navigation matrix.

Now we would like to introduce a method to navigate in dynamic environments.
Instead of using another model for navigation matrix computation, we generalized the
navigation algorithm for dynamic environments into the following formulation:

() currentinitial QQQ ⋅+⋅−= γγ1 (5)

The computation of a navigation matrix remains the same as described in equation (4)
for two different setting in the layout plans. The initial navigation matrix is pre-
computed for static environments with all doors open while the current navigation
matrix is computed during the simulation according to the current situation of the
configurations of the doors. A smoothing parameter 10 ≤≤ γ is added to highlight
the degree of information. A higher the value of γ represents a higher degree of
information based on the agent’s knowledge and previous experience concerning the
infrastructure (e.g. is the door in the next room already open or not).

The navigation matrix for dynamic environments is actually a generalization of the
navigation in static environments, because – without the existence of any door – the
initial navigation matrix is equal to the current navigation matrix and equation (5)
produces the same navigation matrix for whatever value ofγ .

SIMULATION RESULTS

In this section we illustrate the navigations for dynamic environments through simple
scenarios of a layout plan with three rooms, where each room is connected to the next
room by a couple of doors as shown in Figure 3. The network graph corresponding to
the layout plan is also shown. The behaviour of pedestrian agents near open and
closed doors were investigated and compared to a more realistic behaviour that
mimics the human sense of navigation.

The first scenario is the base scenario running for static environments where all doors
are open. Figure 4 shows three scenes where pedestrian agents select the best route
automatically according to the shortest distance (and therefore travel time) to the
destination from the source basin (Figure 4(a)), move through door A C and B D

(Figure 4(b)) and finally reach the sink basin (Figure 4(c)). There is no flow from
door A to door D or from door B to door C. The figures show spatial density: darker
cells indicate higher density and lighter cells represent low density.

Figure 3. Layout plan of 3 rooms with 4 doors (top) and the network graph associated

with the layout (bottom)

(a) (b) (c)

Figure 4. Running simulation in static environment

All scenarios below are designed to illustrate interactivity in dynamic environments.
All doors were set to be closed at the beginning of the simulation to demonstrate the
behaviour of pedestrian agents for different values of degree of information.

(a) (b) (c)

Figure 5. Running simulation in a dynamic environment at no information (0=γ)

The second scenario is running in a dynamic environment with no information
regarding the infrastructure (i.e. 0=γ). Figure 5(a) shows that the agents will queue
in front of the nearest door in the first room because all doors are closed. The queuing
arc similar to real pedestrian behaviour was observed. Then door A that connects the
first and second room is opened and the agents who first queued in front of door A are
now queuing in front of door C as shown in figure 5(b). Figure 5(c) illustrates the next
step when door D opens and no pedestrian agents will pass through door D. This
phenomenon happens because the agents do not have any information regarding the
doors except for the nearest door.

(a) (b) (c)

Figure 6. Running simulation in dynamic environment at full information (1=γ)

In contrast to the second scenario, the third scenario was concerns a dynamic
environment where all agents have full information regarding all routes in the
infrastructure (1=γ). Pedestrian agents do not queue in front of doors. They move
around in the middle of the first room to optimize the way to the doors probably
opening because they don’t know which door will be opened at first as illustrated in
Figure 6(a). When door A is opened, several pedestrian agents start to enter the
second room and move around in the second room as shown in Figure 6(b). Then,
door D is opened and all pedestrian agents move through door A and then through
door D as shown in Figure 6(c).

The two extreme parameter settings on the two scenarios in dynamic environments
above do not fully represent the realistic behaviour of pedestrians in the real world.
More realistic pedestrian agent behaviour in front of closed and open doors shall be
emphasized to produce the following behaviours:

• Pedestrians can queue in front of the door.
• Pedestrians are attracted to pass through a door where there is a queue when

the door is opened, unless there is another door nearby, which is open. A very
far open door will be disregarded.

• Pedestrians go to the next room if the door in front of the agent is opened and
stay there waiting for the next door to be opened. This behaviour happens
regardless whether there is a cell connection to the sink basin or not for the
current layout configuration, as long as a connecting door ((i.e. closed door) to
the sink basin is existing.

A more realistic behaviour as listed above can be reached when both a pre-computed
initial navigation matrix and a re-computation of the navigation matrix for the current
layout configuration exist. In other words, the value of information degree γ must be
adjusted to produce behaviour as listed above. Different layout plans need different

settings of the parameter; for the layout plan with three rooms above, we found that γ
range about 0.7 to 0.85 produces quite satisfying results as shown in figure 7. Some
pedestrian agents still queue in front of the closed door (due to lack of information)
while some of them are proceeding to the destination by a finding new route. Of
course the trajectory path of pedestrian agents in a dynamic environment will not
always have shortest length.

Figure 7. Running simulation in dynamic environment at 7.0=γ

CONCLUSIONS & FURTHER STUDIES

We attempted to model a pedestrian agent’s wayfinding at a mesoscopic level of
detail in a dynamic environment where the doors can be opened and closed at running
time. Using normal pre-computation procedures, the combination of layout
configuration soon goes beyond feasible computation. We generalize the navigation
matrix based on a smoothing relaxation of spatial lattice permission to produce a more
realistic behaviour of pedestrian agents that could queue in front of closed doors,
move to the next room when the door is opened and find another door if a farther door
is the one which is opened. It is quite appealing that this simple model could mimic
human behaviour in navigation, in queuing and walking nearer to the shortest path
and finding the way to the new open door. It was also found that when the
corresponding agents’ focus on the previous knowledge, they tend to follow a global
pattern of previous experience.

Still there are several questions raising in this introductory approach. How to calibrate
such a model spatially are still open question. Comparison of the flow performance of
more complex scenarios and the effect of changing parameters such as information
degree, strength of attraction and speed density relationship in other types of facilities
are also subject to further studies.

ACKNOWLEDGEMENT
This research is supported by the Austrian Science Fund (FWF) through Hertha-
Finberg Fellowship. Special thanks to Dietmar Bauer, Norbert Brändle and Gloria P.
Gerilla who read the first draft of the paper.

REFERENCES
Blue, V.J. and Adler, J.L. (2000) Cellular Automata Microsimulation of Bidirectional
Pedestrian Flows, Transportation Research Board 1678, pp.135-141.

Helbing D. and Molnár P. (1995) Social force model for pedestrian dynamics,
Physical Review E 51, 4282-4286

Hershberger, J. and Suri, S. (1999). An optimal algorithm for Euclidean shortest path

Hoogendoorn, S. P. and Bovy, P. H. L. (2004) Pedestrian route-choice and activity
scheduling theory and models, Transportation Research Part B: Methodological,
Volume 38, Issue 2 , February 2004, 169-190

Kretz, T. and Michael Schreckenberg, M. (2006) F.A.S.T.- Floor field- and Agent-
based Simulation Tool, , Proceeding of International Symposium of Transport
Simulation 2006.

Latombe, J. (1995). Robot Motion Planning. Kluwer Academic Publications, Boston.

Lee, D. T. (1983). Visibility of a simple polygon," Computer Vision, Graphics, and
Image Processing, vol. 22, pp. 207-221.

Neufert (2000) Neufert Architects Data 3rd ed, Blackwell Publishing Company.
Schadschneider A, 2001, "Cellular automaton approach to pedestrian, dynamics-
theory", in M. Schreckenberg, S. D. Sharma (eds.) Pedestrian and Evacuation
Dynamics, Springer, Berlin

Teknomo, K. and Gerilla, G. P. (2005) Sensitivity Analysis and Validation of a Multi-
Agents Pedestrian Model, Journal of the Eastern Asia Society for Transportation
Studies (EASTS), Vol 6, September 2005, p.198-213

Winston, P. H. (1993) Artificial Intelligence 3rd ed., Addison-Wesley Publishing
Company, 1993, Reading, Massachusetts.

Wolfram, S. (2002) A New Kind of Science, Wolfram Media, Inc.

