Kardi Teknomo
Kardi Teknomo Kardi Teknomo Kardi Teknomo
     
 
Research
Publications
Tutorials
Resume
Personal
Resources
Contact

 

Visit Tutorials below:
Adaptive Learning from Histogram
Adjacency matrix
Analytic Hierarchy Process (AHP)
ArcGIS tutorial
Arithmetic Mean
Bayes Theorem
Bootstrap Sampling
Bray Curtis Distance
Break Even Point
Chebyshev Distance
City Block Distance
Conditional Probability
Continued Fraction
Data Analysis from Questionnaire
Data Revival from Statistics
Decimal to Rational
Decision tree
Difference equations
Digital Root
Discriminant analysis
Divisibility
Eigen Value using Excel
Euclidean Distance
Euler Integration
Euler Number
Excel Iteration
Excel Macro
Excel Tutorial
Feasibility Study
Financial Analysis
Generalized Inverse
Generalized Mean
Geometric Mean
Ginger Bread Man and Chaos
Graph Theory
Growth Model
Hamming Distance
Harmonic Mean
Hierarchical Clustering
Independent Events
Incident matrix
Jaccard Coefficient
Kernel basis function
Kernel Regression
k-Means clustering
K Nearest Neighbor
LAN Connections Switch
Learning from data
Lehmer Mean
Linear Algebra
Logarithm Rules
Mahalanobis Distance
Market Basket Analysis
Mean Absolute Deviation
Mean and Average
Mean, median, mode
Minkowski Distance
Minkowski Mean
Monte Carlo Simulation
Multi Agent System
Multicriteria decision making
Mutivariate Distance
Newton Raphson
Non-Linear Transformation
Normalization Index
Normalized Rank
Ordinary Differential Equation
Page Rank
Palindrome
PI
Power rules
Prime Factor
Prime Number
Q Learning
Quadratic Function
Queueing Theory
Rank Reversal
Recursive Statistics
Regression Model
Reinforcement Learning
Root of Polynomial
Runge-Kutta
Scenario Analysis
Sierpinski gasket
Sieve of Erastosthenes
Similarity and Distance
Solving System Equation
Standard deviation
Summation Tricks
Support Vector Machines
System dynamic
Time Average
Tower of Hanoi
Variance
Vedic Square
Visual Basic (VB) tutorial
What If Analysis

Machine Learning Algorithm Tutorials

By Kardi Teknomo, PhD.

Share this: Google+

This tutorial introduce you to the Monte Carlo game, adaptive machine learning using histogram and learning formula to acquire memory. This algorithm is useful for reward and punishment game, educational game programming, and simulation. Numerical example is given for hand calculation and characteristics of each algorithm is explained.

Monte Carlo Game without Learning

Adaptive Learning Game

Learning Histogram

Adaptive learning Numerical Example

Adaptive Learning with Memory

Behavior of Learning Formula

Reinforcement Learning Resources

Rate this tutorial and send your feedback or questions or suggestions.

 

See Also:
Kardi Teknomo's Tutorial, K Nearest Neighbor, K Means clustering, Monte Carlo Simulation Tutorial

Share and save this tutorial
Add to: Del.icio.us  Add to: Digg  Add to: StumbleUpon   Add to: Reddit   Add to: Slashdot   Add to: Technorati   Add to: Netscape   Add to: Newsvine   Add to: Mr. Wong Add to: Webnews Add to: Icio Add to: Folkd Add to: Yigg Add to: Linkarena Add to: Simpy Add to: Furl Add to: Yahoo Add to: Google Add to: Blinklist Add to: Blogmarks Add to: Diigo Add to: Blinkbits Add to: Ma.Gnolia Information

 

These tutorial is copyrighted.

Preferable reference for this tutorial is

Teknomo, Kardi. Learning Algorithm Tutorials. http:\\people.revoledu.com\kardi\ tutorial\Learning\

 

 

learning that make you able to learn beyond what people taught, experience, and to become intellectual leaders




 

 

 
 
© 2006 Kardi Teknomo. All Rights Reserved.
Designed by CNV Media