Share this:
Google+
< Previous | Contents | Next >
Summary
Table below summarized what we have learned so far.
Model |
Brownian Motion |
ABM |
GBM |
Initial Value |
\( 0 \) |
\( x_0 \) |
\( x_0 \) |
SDE Model |
None |
\( dX_t=m dt + s dw_t \) |
\( dX_t=\mu X_t dt + \sigma X_t dw_t \) |
Simulation Model |
\( w_{t+1}=w_t + N(0,1) \) |
\( X_t=x_0+mt+sw_t \)
|
\( X_t=x_0 e^{\tilde{\mu} t + \sigma w_t } \) Where \( \tilde{\mu} = \mu - \frac{1}{2}\sigma^2 \) |
Parameters |
None |
\( m,s \) |
\( \mu, \sigma \) |
Distribution |
Normal |
Normal |
Log-Normal |
Mean |
0 |
\( x_0 + mt \) |
\( x_0 e^{\tilde{\mu}t} \) |
Variance |
1 |
\( s^2 t \) |
\( x_{0}^{2} e^{2\tilde{\mu}t} (e^{\sigma^2t}-1) \) |
< Previous | Contents | Next >
Do you have question regarding this Stochastic Process tutorial? Ask your question here
These tutorial is copyrighted .
Preferable reference for this tutorial is
Teknomo, Kardi. (2017) Stochastic Process Tutorial .
http://people.revoledu.com/kardi/tutorial/StochasticProcess/